Hello, For each customer ID there is a column that contain reasons for overide. This field called X (reasons for overide) is concatenation of strings. My question: What is the way to create the want data set? The want data set will contain multiple new columns (Each overide reason will have column ) and will get binary values 1/0
data have;
input ID X $20.;
cards;
111 RF201|RF205|RF209
222 RF201|RF211
333 RF304
;
Run;
data want;
input ID RF201 RF205 RF209 RF211 RF304 ;
datalines;
111 1 1 1 0 0
222 1 0 0 1 0
333 0 0 0 0 1
;
run;
data have;
input ID X $20.;
cards;
111 RF201|RF205|RF209
222 RF201|RF211
333 RF304
;
Run;
data temp;
set have;
value=1;
do i=1 to countw(X,'|');
temp=scan(X,i,'|');output;
end;
keep id temp value;
run;
proc transpose data=temp out=temp2(drop=_name_);
by id;
var value;
id temp;
run;
proc stdize data=temp2 out=want reponly missing=0;
run;
data have;
input ID X $20.;
cards;
111 RF201|RF205|RF209
222 RF201|RF211
333 RF304
;
Run;
data temp;
set have;
value=1;
do i=1 to countw(X,'|');
temp=scan(X,i,'|');output;
end;
keep id temp value;
run;
proc transpose data=temp out=temp2(drop=_name_);
by id;
var value;
id temp;
run;
proc stdize data=temp2 out=want reponly missing=0;
run;
Thanks,
When I add one more row with missing value (X column) then I recieve a warning
WARNING: 1 observations omitted due to missing ID values.
What is the way to prevent this warning?
Data have;
input CustID X $20.;
cards;
111 RF201|RF205|RF209
222 RF201|RF211
333 RF304
444
;
Run;
/****Wide To Long****/
data temp;
set have;
value=1;
do i=1 to countw(X,'|');
temp=scan(X,i,'|');
output;
end;
keep CustID temp value;
run;
/****Long To Wide****/
proc transpose data=temp out=temp2(drop=_name_);
by CustID;
var value;
id temp;
run;
/*WARNING: 1 observations omitted due to missing ID values.*/
/***Convert Missing into zero***/
proc stdize data=temp2 out=want reponly missing=0;
run;
another way:
data split;
set have;
length rf $ 5;
do i = 1 to countw(x, '|');
rf = scan(x, i, '|');
output;
end;
drop x i;
run;
proc sql noprint;
select distinct rf
into :rf_list separated by ' '
from work.split;
quit;
data want;
set split;
by id;
length &rf_list. 8;
retain &rf_list.;
array rf_list &rf_list.;
if first.id then do;
do i = 1 to dim(rf_list);
rf_list[i] = 0;
end;
end;
rf_list[findw("&rf_list", rf, ' ', 'ets')] = 1;
if last.id then output;
drop i rf;
run;
If you know in advance the names you want to use for the flag variables (and the names matches the text you have in your X variable) you can just use an ARRAY and the FINDW() function.
data have;
input ID X $20.;
cards;
111 RF201|RF205|RF209
222 RF201|RF211
333 RF304
444
;
data want;
set have;
array flags RF201 RF205 RF209 RF211 RF304;
do over flags;
flags=0<findw(x,vname(flags),'|','ti');
end;
run;
/*
OK.It looks like you have some unexpected data.
*/
Data have;
input CustID X $20.;
cards;
111 RF201|RF205|RF209
222 RF201|RF211
333 RF304
444
;
Run;
/****Wide To Long****/
data temp;
set have(where=(X is not missing));
value=1;
do i=1 to countw(X,'|');
temp=scan(X,i,'|');
output;
end;
keep CustID temp value;
run;
/****Long To Wide****/
proc transpose data=temp out=temp2(drop=_name_) ;
by CustID;
var value;
id temp;
run;
/*Combine ID with missing X back.*/
data temp2;
set temp2 have(where=(X is missing));
drop X;
run;
/***Convert Missing into zero***/
proc stdize data=temp2 out=want reponly missing=0;
run;
Are you ready for the spotlight? We're accepting content ideas for SAS Innovate 2025 to be held May 6-9 in Orlando, FL. The call is open until September 16. Read more here about why you should contribute and what is in it for you!
Learn how use the CAT functions in SAS to join values from multiple variables into a single value.
Find more tutorials on the SAS Users YouTube channel.