I have a dataset A that has 96 hourly observations (var_A). I also have a dataset B that has 24 average hourly observations (var_B).
I want to combine the datasets A & B to make dataset C (attached).
How do I repeat the datalines of var_B from dataset B so that dataset C shows the same 24 average hourly values over and over until the end of the dataset A?
data c;
set c;
input avg_delivered_kw @@;
datalines;
1.2075434357
1.1069760113
1.0151325226
0.9682368384
1.0312725859
1.0515738245
0.8532573946
0.6135882055
0.4793938309
0.4483874046
0.5043064344
0.5824541904
0.7168952859
0.9070687706
1.1672568734
1.6091569573
2.1673370093
2.5960530086
2.5846035421
2.4253723858
2.2624625265
1.9173588172
1.5982197997
1.3700097842
;
run;My excel file attachment may explain better the desired end result for dataset C.
Dataset A:
| Date | Hour | var_A |
| 6/1/2018 | 100 | 1 |
| 6/1/2018 | 200 | 2 |
| 6/1/2018 | 300 | 3 |
| 6/1/2018 | 400 | 4 |
| 6/1/2018 | 500 | 5 |
| 6/1/2018 | 600 | 6 |
| 6/1/2018 | 700 | 7 |
| 6/1/2018 | 800 | 8 |
| 6/1/2018 | 900 | 9 |
| 6/1/2018 | 1000 | 10 |
| 6/1/2018 | 1100 | 11 |
| 6/1/2018 | 1200 | 12 |
| 6/1/2018 | 1300 | 13 |
| 6/1/2018 | 1400 | 14 |
| 6/1/2018 | 1500 | 15 |
| 6/1/2018 | 1600 | 16 |
| 6/1/2018 | 1700 | 17 |
| 6/1/2018 | 1800 | 18 |
| 6/1/2018 | 1900 | 19 |
| 6/1/2018 | 2000 | 20 |
| 6/1/2018 | 2100 | 21 |
| 6/1/2018 | 2200 | 22 |
| 6/1/2018 | 2300 | 23 |
| 6/1/2018 | 2400 | 24 |
| 6/4/2018 | 100 | 25 |
| 6/4/2018 | 200 | 26 |
| 6/4/2018 | 300 | 27 |
| 6/4/2018 | 400 | 28 |
| 6/4/2018 | 500 | 29 |
| 6/4/2018 | 600 | 30 |
| 6/4/2018 | 700 | 31 |
| 6/4/2018 | 800 | 32 |
| 6/4/2018 | 900 | 33 |
| 6/4/2018 | 1000 | 34 |
| 6/4/2018 | 1100 | 35 |
| 6/4/2018 | 1200 | 36 |
| 6/4/2018 | 1300 | 37 |
| 6/4/2018 | 1400 | 38 |
| 6/4/2018 | 1500 | 39 |
| 6/4/2018 | 1600 | 40 |
| 6/4/2018 | 1700 | 41 |
| 6/4/2018 | 1800 | 42 |
| 6/4/2018 | 1900 | 43 |
| 6/4/2018 | 2000 | 44 |
| 6/4/2018 | 2100 | 45 |
| 6/4/2018 | 2200 | 46 |
| 6/4/2018 | 2300 | 47 |
| 6/4/2018 | 2400 | 48 |
| 6/5/2018 | 100 | 49 |
| 6/5/2018 | 200 | 50 |
| 6/5/2018 | 300 | 51 |
| 6/5/2018 | 400 | 52 |
| 6/5/2018 | 500 | 53 |
| 6/5/2018 | 600 | 54 |
| 6/5/2018 | 700 | 55 |
| 6/5/2018 | 800 | 56 |
| 6/5/2018 | 900 | 57 |
| 6/5/2018 | 1000 | 58 |
| 6/5/2018 | 1100 | 59 |
| 6/5/2018 | 1200 | 60 |
| 6/5/2018 | 1300 | 61 |
| 6/5/2018 | 1400 | 62 |
| 6/5/2018 | 1500 | 63 |
| 6/5/2018 | 1600 | 64 |
| 6/5/2018 | 1700 | 65 |
| 6/5/2018 | 1800 | 66 |
| 6/5/2018 | 1900 | 67 |
| 6/5/2018 | 2000 | 68 |
| 6/5/2018 | 2100 | 69 |
| 6/5/2018 | 2200 | 70 |
| 6/5/2018 | 2300 | 71 |
| 6/5/2018 | 2400 | 72 |
| 6/6/2018 | 100 | 73 |
| 6/6/2018 | 200 | 74 |
| 6/6/2018 | 300 | 75 |
| 6/6/2018 | 400 | 76 |
| 6/6/2018 | 500 | 77 |
| 6/6/2018 | 600 | 78 |
| 6/6/2018 | 700 | 79 |
| 6/6/2018 | 800 | 80 |
| 6/6/2018 | 900 | 81 |
| 6/6/2018 | 1000 | 82 |
| 6/6/2018 | 1100 | 83 |
| 6/6/2018 | 1200 | 84 |
| 6/6/2018 | 1300 | 85 |
| 6/6/2018 | 1400 | 86 |
| 6/6/2018 | 1500 | 87 |
| 6/6/2018 | 1600 | 88 |
| 6/6/2018 | 1700 | 89 |
| 6/6/2018 | 1800 | 90 |
| 6/6/2018 | 1900 | 91 |
| 6/6/2018 | 2000 | 92 |
| 6/6/2018 | 2100 | 93 |
| 6/6/2018 | 2200 | 94 |
| 6/6/2018 | 2300 | 95 |
| 6/6/2018 | 2400 | 96 |
Dataset B:
| Hour | var_B |
| 100 | 2.1 |
| 200 | 3.1 |
| 300 | 4.1 |
| 400 | 5.1 |
| 500 | 6.1 |
| 600 | 7.1 |
| 700 | 8.1 |
| 800 | 9.1 |
| 900 | 10.1 |
| 1000 | 11.1 |
| 1100 | 12.1 |
| 1200 | 13.1 |
| 1300 | 14.1 |
| 1400 | 15.1 |
| 1500 | 16.1 |
| 1600 | 17.1 |
| 1700 | 18.1 |
| 1800 | 19.1 |
| 1900 | 20.1 |
| 2000 | 21.1 |
| 2100 | 22.1 |
| 2200 | 23.1 |
| 2300 | 24.1 |
| 2400 | 25.1 |
Dataset C (goal dataset):
| Date | Hour | var_A | var_B |
| 6/1/2018 | 100 | 1 | 2.1 |
| 6/1/2018 | 200 | 2 | 3.1 |
| 6/1/2018 | 300 | 3 | 4.1 |
| 6/1/2018 | 400 | 4 | 5.1 |
| 6/1/2018 | 500 | 5 | 6.1 |
| 6/1/2018 | 600 | 6 | 7.1 |
| 6/1/2018 | 700 | 7 | 8.1 |
| 6/1/2018 | 800 | 8 | 9.1 |
| 6/1/2018 | 900 | 9 | 10.1 |
| 6/1/2018 | 1000 | 10 | 11.1 |
| 6/1/2018 | 1100 | 11 | 12.1 |
| 6/1/2018 | 1200 | 12 | 13.1 |
| 6/1/2018 | 1300 | 13 | 14.1 |
| 6/1/2018 | 1400 | 14 | 15.1 |
| 6/1/2018 | 1500 | 15 | 16.1 |
| 6/1/2018 | 1600 | 16 | 17.1 |
| 6/1/2018 | 1700 | 17 | 18.1 |
| 6/1/2018 | 1800 | 18 | 19.1 |
| 6/1/2018 | 1900 | 19 | 20.1 |
| 6/1/2018 | 2000 | 20 | 21.1 |
| 6/1/2018 | 2100 | 21 | 22.1 |
| 6/1/2018 | 2200 | 22 | 23.1 |
| 6/1/2018 | 2300 | 23 | 24.1 |
| 6/1/2018 | 2400 | 24 | 25.1 |
| 6/4/2018 | 100 | 25 | 2.1 |
| 6/4/2018 | 200 | 26 | 3.1 |
| 6/4/2018 | 300 | 27 | 4.1 |
| 6/4/2018 | 400 | 28 | 5.1 |
| 6/4/2018 | 500 | 29 | 6.1 |
| 6/4/2018 | 600 | 30 | 7.1 |
| 6/4/2018 | 700 | 31 | 8.1 |
| 6/4/2018 | 800 | 32 | 9.1 |
| 6/4/2018 | 900 | 33 | 10.1 |
| 6/4/2018 | 1000 | 34 | 11.1 |
| 6/4/2018 | 1100 | 35 | 12.1 |
| 6/4/2018 | 1200 | 36 | 13.1 |
| 6/4/2018 | 1300 | 37 | 14.1 |
| 6/4/2018 | 1400 | 38 | 15.1 |
| 6/4/2018 | 1500 | 39 | 16.1 |
| 6/4/2018 | 1600 | 40 | 17.1 |
| 6/4/2018 | 1700 | 41 | 18.1 |
| 6/4/2018 | 1800 | 42 | 19.1 |
| 6/4/2018 | 1900 | 43 | 20.1 |
| 6/4/2018 | 2000 | 44 | 21.1 |
| 6/4/2018 | 2100 | 45 | 22.1 |
| 6/4/2018 | 2200 | 46 | 23.1 |
| 6/4/2018 | 2300 | 47 | 24.1 |
| 6/4/2018 | 2400 | 48 | 25.1 |
| 6/5/2018 | 100 | 49 | 2.1 |
| 6/5/2018 | 200 | 50 | 3.1 |
| 6/5/2018 | 300 | 51 | 4.1 |
| 6/5/2018 | 400 | 52 | 5.1 |
| 6/5/2018 | 500 | 53 | 6.1 |
| 6/5/2018 | 600 | 54 | 7.1 |
| 6/5/2018 | 700 | 55 | 8.1 |
| 6/5/2018 | 800 | 56 | 9.1 |
| 6/5/2018 | 900 | 57 | 10.1 |
| 6/5/2018 | 1000 | 58 | 11.1 |
| 6/5/2018 | 1100 | 59 | 12.1 |
| 6/5/2018 | 1200 | 60 | 13.1 |
| 6/5/2018 | 1300 | 61 | 14.1 |
| 6/5/2018 | 1400 | 62 | 15.1 |
| 6/5/2018 | 1500 | 63 | 16.1 |
| 6/5/2018 | 1600 | 64 | 17.1 |
| 6/5/2018 | 1700 | 65 | 18.1 |
| 6/5/2018 | 1800 | 66 | 19.1 |
| 6/5/2018 | 1900 | 67 | 20.1 |
| 6/5/2018 | 2000 | 68 | 21.1 |
| 6/5/2018 | 2100 | 69 | 22.1 |
| 6/5/2018 | 2200 | 70 | 23.1 |
| 6/5/2018 | 2300 | 71 | 24.1 |
| 6/5/2018 | 2400 | 72 | 25.1 |
| 6/6/2018 | 100 | 73 | 2.1 |
| 6/6/2018 | 200 | 74 | 3.1 |
| 6/6/2018 | 300 | 75 | 4.1 |
| 6/6/2018 | 400 | 76 | 5.1 |
| 6/6/2018 | 500 | 77 | 6.1 |
| 6/6/2018 | 600 | 78 | 7.1 |
| 6/6/2018 | 700 | 79 | 8.1 |
| 6/6/2018 | 800 | 80 | 9.1 |
| 6/6/2018 | 900 | 81 | 10.1 |
| 6/6/2018 | 1000 | 82 | 11.1 |
| 6/6/2018 | 1100 | 83 | 12.1 |
| 6/6/2018 | 1200 | 84 | 13.1 |
| 6/6/2018 | 1300 | 85 | 14.1 |
| 6/6/2018 | 1400 | 86 | 15.1 |
| 6/6/2018 | 1500 | 87 | 16.1 |
| 6/6/2018 | 1600 | 88 | 17.1 |
| 6/6/2018 | 1700 | 89 | 18.1 |
| 6/6/2018 | 1800 | 90 | 19.1 |
| 6/6/2018 | 1900 | 91 | 20.1 |
| 6/6/2018 | 2000 | 92 | 21.1 |
| 6/6/2018 | 2100 | 93 | 22.1 |
| 6/6/2018 | 2200 | 94 | 23.1 |
| 6/6/2018 | 2300 | 95 | 24.1 |
| 6/6/2018 | 2400 | 96 | 25.1 |
This was my solution:
proc sort data=dataset_a;
by Hour;
run;
data dataset_c;
merge dataset_a dataset_b;
by hour;
run;
proc sort data=dataset_c;
by Date;
run;
This was my solution:
proc sort data=dataset_a;
by Hour;
run;
data dataset_c;
merge dataset_a dataset_b;
by hour;
run;
proc sort data=dataset_c;
by Date;
run;
April 27 – 30 | Gaylord Texan | Grapevine, Texas
Walk in ready to learn. Walk out ready to deliver. This is the data and AI conference you can't afford to miss.
Register now and save with the early bird rate—just $795!
Learn how use the CAT functions in SAS to join values from multiple variables into a single value.
Find more tutorials on the SAS Users YouTube channel.
Ready to level-up your skills? Choose your own adventure.