Hello everyone,
I have an aggregated dataset that I want to expand for further calculation. Does anyone know I could achieve this in data step programming.
Dataset have
data have;
input name $ group $ mo_freq $ value ;
datalines;
wlf_01 actv 1-4 0
wlf_01 actv 5-7 1.15
wlf_01 actv 8-10 1.00
wlf_02 dflt 1-4 0
wlf_02 dflt 5-6 5.15
wlf_02 dflt 7-8 4.25
wlf_02 dflt 9-10 0
wlf_03 prog 1-10 2.23
;
run;
dataset want
name |
group |
mo_freq |
month |
value |
wlf_01 |
actv |
1-4 |
1 |
0.00 |
wlf_01 |
actv |
1-4 |
2 |
0.00 |
wlf_01 |
actv |
1-4 |
3 |
0.00 |
wlf_01 |
actv |
1-4 |
4 |
0.00 |
wlf_01 |
actv |
5-7 |
5 |
1.15 |
wlf_01 |
actv |
5-7 |
6 |
1.15 |
wlf_01 |
actv |
5-7 |
7 |
1.15 |
wlf_01 |
actv |
8-10 |
8 |
1.00 |
wlf_01 |
actv |
8-10 |
9 |
1.00 |
wlf_01 |
actv |
8-10 |
10 |
1.00 |
wlf_02 |
dflt |
1-4 |
1 |
0.00 |
wlf_02 |
dflt |
1-4 |
2 |
0.00 |
wlf_02 |
dflt |
1-4 |
3 |
0.00 |
wlf_02 |
dflt |
1-4 |
4 |
0.00 |
wlf_02 |
dflt |
5-6 |
5 |
5.15 |
wlf_02 |
dflt |
5-6 |
6 |
5.15 |
wlf_02 |
dflt |
7-8 |
7 |
4.25 |
wlf_02 |
dflt |
7-8 |
8 |
4.25 |
wlf_02 |
dflt |
9-10 |
9 |
0.00 |
wlf_02 |
dflt |
9-10 |
10 |
0.00 |
wlf_03 |
prog |
1-10 |
1 |
2.23 |
wlf_03 |
prog |
1-10 |
2 |
2.23 |
wlf_03 |
prog |
1-10 |
3 |
2.23 |
wlf_03 |
prog |
1-10 |
4 |
2.23 |
wlf_03 |
prog |
1-10 |
5 |
2.23 |
wlf_03 |
prog |
1-10 |
6 |
2.23 |
wlf_03 |
prog |
1-10 |
7 |
2.23 |
wlf_03 |
prog |
1-10 |
8 |
2.23 |
wlf_03 |
prog |
1-10 |
9 |
2.23 |
wlf_03 |
prog |
1-10 |
10 |
2.23 |
Key is getting the numeric values from the character variable mo_freq;
data want; input name $ group $ mo_freq $ value ; do month = input(scan(mo_freq,1),best.) to ( input(scan(mo_freq,2),best.)); output; end; datalines; wlf_01 actv 1-4 0 wlf_01 actv 5-7 1.15 wlf_01 actv 8-10 1.00 wlf_02 dflt 1-4 0 wlf_02 dflt 5-6 5.15 wlf_02 dflt 7-8 4.25 wlf_02 dflt 9-10 0 wlf_03 prog 1-10 2.23 ; run;
Key is getting the numeric values from the character variable mo_freq;
data want; input name $ group $ mo_freq $ value ; do month = input(scan(mo_freq,1),best.) to ( input(scan(mo_freq,2),best.)); output; end; datalines; wlf_01 actv 1-4 0 wlf_01 actv 5-7 1.15 wlf_01 actv 8-10 1.00 wlf_02 dflt 1-4 0 wlf_02 dflt 5-6 5.15 wlf_02 dflt 7-8 4.25 wlf_02 dflt 9-10 0 wlf_03 prog 1-10 2.23 ; run;
It's finally time to hack! Remember to visit the SAS Hacker's Hub regularly for news and updates.
Learn how use the CAT functions in SAS to join values from multiple variables into a single value.
Find more tutorials on the SAS Users YouTube channel.
Ready to level-up your skills? Choose your own adventure.