As a minimal working example, I have dataset similar to the following:
DATA have ;
input group_name $ fips year quarter NA;
DATALINES;
sam 1055 1978 1 0
sam 1055 1978 2 0
sam 1055 1978 3 0
sam 1055 1978 4 1
sam 1055 1979 1 0
sam 1055 1979 2 1
sam 1055 1979 3 1
sam 1055 1979 4 1
sam 1055 1980 1 0
sam 1055 1980 2 0
sam 1055 1980 3 0
sam 1055 1980 4 0
sam 1055 1981 1 0
sam 1055 1981 2 1
sam 1055 1981 3 1
sam 1055 1981 4 1
sam 1066 1978 1 0
sam 1066 1978 2 1
sam 1066 1978 3 0
sam 1066 1978 4 0
sam 1066 1979 1 0
sam 1066 1979 2 0
sam 1066 1979 3 0
sam 1066 1979 4 0
sam 1066 1980 1 0
sam 1066 1980 2 0
sam 1066 1980 3 0
sam 1066 1980 4 0
sam 1066 1981 1 0
sam 1066 1981 2 0
sam 1066 1981 3 0
sam 1066 1981 4 0
harry 1066 1978 1 0
harry 1066 1978 2 0
harry 1066 1978 3 0
harry 1066 1978 4 0
harry 1066 1979 1 0
harry 1066 1979 2 0
harry 1066 1979 3 0
harry 1066 1979 4 0
harry 1066 1980 1 1
harry 1066 1980 2 1
harry 1066 1980 3 1
harry 1066 1980 4 1
harry 1066 1981 1 1
harry 1066 1981 2 1
harry 1066 1981 3 1
harry 1066 1981 4 1
;
RUN;
I have another dataset that lists the unique "fips":
DATA fips ;
input fips;
DATALINES;
1001
1044
1055
1066
;
RUN;
I want to create the following dataset:
DATA want ;
input group_name $ fips year quarter NA;
DATALINES;
sam 1001 1978 1 0
sam 1001 1978 2 0
sam 1001 1978 3 0
sam 1001 1978 4 0
sam 1001 1979 1 0
sam 1001 1979 2 0
sam 1001 1979 3 0
sam 1001 1979 4 0
sam 1001 1980 1 0
sam 1001 1980 2 0
sam 1001 1980 3 0
sam 1001 1980 4 0
sam 1001 1981 1 0
sam 1001 1981 2 0
sam 1001 1981 3 0
sam 1001 1981 4 0
sam 1044 1978 1 0
sam 1044 1978 2 0
sam 1044 1978 3 0
sam 1044 1978 4 0
sam 1044 1979 1 0
sam 1044 1979 2 0
sam 1044 1979 3 0
sam 1044 1979 4 0
sam 1044 1980 1 0
sam 1044 1980 2 0
sam 1044 1980 3 0
sam 1044 1980 4 0
sam 1044 1981 1 0
sam 1044 1981 2 0
sam 1044 1981 3 0
sam 1044 1981 4 0
sam 1055 1978 1 0
sam 1055 1978 2 0
sam 1055 1978 3 0
sam 1055 1978 4 1
sam 1055 1979 1 0
sam 1055 1979 2 1
sam 1055 1979 3 1
sam 1055 1979 4 1
sam 1055 1980 1 0
sam 1055 1980 2 0
sam 1055 1980 3 0
sam 1055 1980 4 0
sam 1055 1981 1 0
sam 1055 1981 2 1
sam 1055 1981 3 1
sam 1055 1981 4 1
sam 1066 1978 1 0
sam 1066 1978 2 1
sam 1066 1978 3 0
sam 1066 1978 4 0
sam 1066 1979 1 0
sam 1066 1979 2 0
sam 1066 1979 3 0
sam 1066 1979 4 0
sam 1066 1980 1 0
sam 1066 1980 2 0
sam 1066 1980 3 0
sam 1066 1980 4 0
sam 1066 1981 1 0
sam 1066 1981 2 0
sam 1066 1981 3 0
sam 1066 1981 4 0
harry 1001 1978 1 0
harry 1001 1978 2 0
harry 1001 1978 3 0
harry 1001 1978 4 0
harry 1001 1979 1 0
harry 1001 1979 2 0
harry 1001 1979 3 0
harry 1001 1979 4 0
harry 1001 1980 1 0
harry 1001 1980 2 0
harry 1001 1980 3 0
harry 1001 1980 4 0
harry 1001 1981 1 0
harry 1001 1981 2 0
harry 1001 1981 3 0
harry 1001 1981 4 0
harry 1044 1978 1 0
harry 1044 1978 2 0
harry 1044 1978 3 0
harry 1044 1978 4 0
harry 1044 1979 1 0
harry 1044 1979 2 0
harry 1044 1979 3 0
harry 1044 1979 4 0
harry 1044 1980 1 0
harry 1044 1980 2 0
harry 1044 1980 3 0
harry 1044 1980 4 0
harry 1044 1981 1 0
harry 1044 1981 2 0
harry 1044 1981 3 0
harry 1044 1981 4 0
harry 1055 1978 1 0
harry 1055 1978 2 0
harry 1055 1978 3 0
harry 1055 1978 4 0
harry 1055 1979 1 0
harry 1055 1979 2 0
harry 1055 1979 3 0
harry 1055 1979 4 0
harry 1055 1980 1 0
harry 1055 1980 2 0
harry 1055 1980 3 0
harry 1055 1980 4 0
harry 1055 1981 1 0
harry 1055 1981 2 0
harry 1055 1981 3 0
harry 1055 1981 4 0
harry 1066 1978 1 0
harry 1066 1978 2 0
harry 1066 1978 3 0
harry 1066 1978 4 0
harry 1066 1979 1 0
harry 1066 1979 2 0
harry 1066 1979 3 0
harry 1066 1979 4 0
harry 1066 1980 1 1
harry 1066 1980 2 1
harry 1066 1980 3 1
harry 1066 1980 4 1
harry 1066 1981 1 1
harry 1066 1981 2 1
harry 1066 1981 3 1
harry 1066 1981 4 1
;
RUN;
The idea is simple: For each group_name, if the fips does not appear in "have" but is in "fips", then fill in NA = 0 from 1978Q1 to 1981Q4. So for instance, fips=1001 and 1044 do not appear for group_name = sam, so these are filled in. Similarly, for group_name = harry, it is missing 1001, 1044, and 1055, so these are filled in.
Assuming I understood what you mean.
DATA have ;
input group_name $ fips year quarter NA;
DATALINES;
sam 1055 1978 1 0
sam 1055 1978 2 0
sam 1055 1978 3 0
sam 1055 1978 4 1
sam 1055 1979 1 0
sam 1055 1979 2 1
sam 1055 1979 3 1
sam 1055 1979 4 1
sam 1055 1980 1 0
sam 1055 1980 2 0
sam 1055 1980 3 0
sam 1055 1980 4 0
sam 1055 1981 1 0
sam 1055 1981 2 1
sam 1055 1981 3 1
sam 1055 1981 4 1
sam 1066 1978 1 0
sam 1066 1978 2 1
sam 1066 1978 3 0
sam 1066 1978 4 0
sam 1066 1979 1 0
sam 1066 1979 2 0
sam 1066 1979 3 0
sam 1066 1979 4 0
sam 1066 1980 1 0
sam 1066 1980 2 0
sam 1066 1980 3 0
sam 1066 1980 4 0
sam 1066 1981 1 0
sam 1066 1981 2 0
sam 1066 1981 3 0
sam 1066 1981 4 0
harry 1066 1978 1 0
harry 1066 1978 2 0
harry 1066 1978 3 0
harry 1066 1978 4 0
harry 1066 1979 1 0
harry 1066 1979 2 0
harry 1066 1979 3 0
harry 1066 1979 4 0
harry 1066 1980 1 1
harry 1066 1980 2 1
harry 1066 1980 3 1
harry 1066 1980 4 1
harry 1066 1981 1 1
harry 1066 1981 2 1
harry 1066 1981 3 1
harry 1066 1981 4 1
;
RUN;
DATA fips ;
input fips;
DATALINES;
1001
1044
1055
1066
;
RUN;
proc sql;
create table want as
select a.*,coalesce(b.NA,0) as NA from
(
select * from
(select distinct group_name from have),
(select distinct fips from fips),
(select distinct year from have),
(select distinct quarter from have)
) as a left join have as b
on a.group_name=b.group_name and a.fips=b.fips
and a.year=b.year and a.quarter=b.quarter ;
quit;
Assuming I understood what you mean.
DATA have ;
input group_name $ fips year quarter NA;
DATALINES;
sam 1055 1978 1 0
sam 1055 1978 2 0
sam 1055 1978 3 0
sam 1055 1978 4 1
sam 1055 1979 1 0
sam 1055 1979 2 1
sam 1055 1979 3 1
sam 1055 1979 4 1
sam 1055 1980 1 0
sam 1055 1980 2 0
sam 1055 1980 3 0
sam 1055 1980 4 0
sam 1055 1981 1 0
sam 1055 1981 2 1
sam 1055 1981 3 1
sam 1055 1981 4 1
sam 1066 1978 1 0
sam 1066 1978 2 1
sam 1066 1978 3 0
sam 1066 1978 4 0
sam 1066 1979 1 0
sam 1066 1979 2 0
sam 1066 1979 3 0
sam 1066 1979 4 0
sam 1066 1980 1 0
sam 1066 1980 2 0
sam 1066 1980 3 0
sam 1066 1980 4 0
sam 1066 1981 1 0
sam 1066 1981 2 0
sam 1066 1981 3 0
sam 1066 1981 4 0
harry 1066 1978 1 0
harry 1066 1978 2 0
harry 1066 1978 3 0
harry 1066 1978 4 0
harry 1066 1979 1 0
harry 1066 1979 2 0
harry 1066 1979 3 0
harry 1066 1979 4 0
harry 1066 1980 1 1
harry 1066 1980 2 1
harry 1066 1980 3 1
harry 1066 1980 4 1
harry 1066 1981 1 1
harry 1066 1981 2 1
harry 1066 1981 3 1
harry 1066 1981 4 1
;
RUN;
DATA fips ;
input fips;
DATALINES;
1001
1044
1055
1066
;
RUN;
proc sql;
create table want as
select a.*,coalesce(b.NA,0) as NA from
(
select * from
(select distinct group_name from have),
(select distinct fips from fips),
(select distinct year from have),
(select distinct quarter from have)
) as a left join have as b
on a.group_name=b.group_name and a.fips=b.fips
and a.year=b.year and a.quarter=b.quarter ;
quit;
If you only want the years already present for a given group_name (and not years that may only be present in other group_names) :
proc sql;
create table want as
select
b.group_name,
a.fips,
b.year,
b.quarter,
coalesce(c.NA, 0) as NA
from
fips as a cross join
(select distinct group_name, year, quarter from have) as b left join
have as c on b.group_name=c.group_name and a.fips=c.fips and b.year=c.year and b.quarter=c.quarter
order by group_name desc, fips, year, quarter;
quit;
Thanks to you both! But I was wondering what is the difference between your solution and Ksharp's? It seems both provide the same outcome. To be more specific about the rule: For each group_name in "have", I want to look through the fips variable, and any value that does not appear in the master list of fips in the "fips" dataset will need to be filled in with 0's for NA. So for instance, for the group_name = sam, the corresponding fips are 1055 and 1066. From the list of fips in "fips" dataset, the only missing fips are 1001 and 1044, so these are filled in with 0's. Similarly for group_name = harry, it only has fips = 1066 and it is missing 1001, 1044, and 1055 from the masterlist, so these are filled in for harry. The "fips" dataset is a masterlist, it will always contain all possible fips values.
They differ in the way they treat the years that are not present in every group. Add the following observation to the data :
harry 1066 1972 1 0
And run the queries :
proc sql;
create table wantPG as
select
c.group_name,
a.fips,
c.year,
b.quarter,
coalesce(d.NA, 0) as NA
from
fips as a cross join
(select distinct quarter from have) as b cross join
(select distinct group_name, year from have) as c left join
have as d on c.group_name=d.group_name and a.fips=d.fips and c.year=d.year and b.quarter=d.quarter
order by group_name desc, fips, year, quarter;
quit;
proc sql;
create table wantKS as
select a.*,coalesce(b.NA,0) as NA from
(
select * from
(select distinct group_name from have),
(select distinct fips from fips),
(select distinct year from have),
(select distinct quarter from have)
) as a left join have as b
on a.group_name=b.group_name and a.fips=b.fips
and a.year=b.year and a.quarter=b.quarter;
quit;
proc sql;
title "Year = 1972 obs. - PG";
select * from wantPG where year=1972;
title "Year = 1972 obs. - KS";
select * from wantKS where year=1972;
quit;
DATA have ;
infile datalines dlm="09"x;
input group_name $ fips year quarter NA;
DATALINES;
sam 1055 1978 1 0
sam 1055 1978 2 0
sam 1055 1978 3 0
sam 1055 1978 4 1
sam 1055 1979 1 0
sam 1055 1979 2 1
sam 1055 1979 3 1
sam 1055 1979 4 1
sam 1055 1980 1 0
sam 1055 1980 2 0
sam 1055 1980 3 0
sam 1055 1980 4 0
sam 1055 1981 1 0
sam 1055 1981 2 1
sam 1055 1981 3 1
sam 1055 1981 4 1
sam 1066 1978 1 0
sam 1066 1978 2 1
sam 1066 1978 3 0
sam 1066 1978 4 0
sam 1066 1979 1 0
sam 1066 1979 2 0
sam 1066 1979 3 0
sam 1066 1979 4 0
sam 1066 1980 1 0
sam 1066 1980 2 0
sam 1066 1980 3 0
sam 1066 1980 4 0
sam 1066 1981 1 0
sam 1066 1981 2 0
sam 1066 1981 3 0
sam 1066 1981 4 0
harry 1066 1978 1 0
harry 1066 1978 2 0
harry 1066 1978 3 0
harry 1066 1978 4 0
harry 1066 1979 1 0
harry 1066 1979 2 0
harry 1066 1979 3 0
harry 1066 1979 4 0
harry 1066 1980 1 1
harry 1066 1980 2 1
harry 1066 1980 3 1
harry 1066 1980 4 1
harry 1066 1981 1 1
harry 1066 1981 2 1
harry 1066 1981 3 1
harry 1066 1981 4 1
;
RUN;
DATA fips ;
infile datalines dlm="09"x;
input fips;
DATALINES;
1001
1044
1055
1066
;
RUN;
data want;
length group_name $ 8 fips year quarter NA 8;
set fips;
do i=1 to nobs;
set have(rename=(fips=_fips)) point=i nobs=nobs;
if fips ne _fips then do;
na=0;
end;
output;
end;
drop _fips;
run;
proc sort data=want;
by descending group_name fips year quarter descending NA;
run;
proc sort data=want nodupkey;
by descending group_name fips year quarter;
run;
Join us for SAS Innovate 2025, our biggest and most exciting global event of the year, in Orlando, FL, from May 6-9. Sign up by March 14 for just $795.
Learn how use the CAT functions in SAS to join values from multiple variables into a single value.
Find more tutorials on the SAS Users YouTube channel.
Ready to level-up your skills? Choose your own adventure.