BookmarkSubscribeRSS Feed
Yurie
Fluorite | Level 6

Hello, I need to build a preditive model for my data. The variables include: year, gender, race, num_cases, location, ageGroup, disease(1:yes, 0:No), maritual_status, charge. We did not collect race data for the first 4 years (coded 99).

 

1) How can I deal with the missing race data? (It seems the race is significant.)

2) How can I build a model to predict the probability (disease="yes") for the given variables in the dataset?

Very appreciate for any suggestions and help. Thanks. 

 

data have;
input year Gender$ Race Num_Cases Location gender agegroup Disease maritual_status charge;
datalines;
1 M 99 1 8 1 6 1 5 900
1 M 99 5 3 1 6 1 1 152
1 F 99 3 16 0 7 1 6 588
1 M 99 26 3 1 7 1 2 79
1 M 99 1 16 1 7 1 6 179
1 M 99 1 12 1 5 1 2 100
1 M 99 2 4 1 7 1 1 245
2 M 99 1 3 1 5 1 5 625
2 F 99 2 3 0 5 1 1 35
2 F 99 1 16 0 6 1 2 144
2 F 99 1 3 0 5 0 5 625
2 F 99 1 3 0 6 0 4 576
2 F 99 3 3 0 6 1 4 192
3 M 99 6 3 1 5 0 1 500
3 M 99 1 3 1 7 1 2 196
3 M 99 1 1 1 6 0 1 36
3 M 99 1 3 1 5 0 1 25
4 M 99 1 3 1 5 0 2 100
4 M 99 3 16 1 5 1 2 352
4 F 99 1 16 0 6 1 6 1296
4 F 99 6 11 0 7 0 2 254
5 M 1 1 3 1 5 1 1 25
5 F 2 3 16 0 4 1 2 213
6 F 1 1 2 0 7 1 6 184
6 F 1 1 13 0 7 1 2 196
6 F 1 1 4 0 7 0 1 49
6 M 4 2 3 1 5 0 1 125
6 F 5 33 3 0 6 0 5 80
7 F 4 1 16 0 7 0 6 1764
7 F 4 2 3 0 6 0 6 648
7 M 6 1 16 1 6 1 6 1296
7 F 2 1 2 0 5 0 5 625
7 F 1 24 3 0 5 0 2 452
7 F 1 1 3 0 6 1 1 362
8 M 5 2 10 1 7 1 2 980
8 M 1 5 3 1 4 1 1 350
8 F 1 1 3 0 6 0 99 352
8 M 5 1 3 1 5 0 1 25
8 M 1 1 3 1 7 0 1 49
9 M 1 1 13 1 7 1 5 1225
9 M 5 4 16 1 7 0 1 122
9 F 5 2 3 0 7 1 2 98
9 M 1 1 1 1 7 1 5 126
10 F 1 66 3 0 6 0 1 54
10 F 2 1 1 0 5 0 1 25
10 F 1 2 4 0 6 0 5 450
10 M 1 3 16 1 7 0 5 408
11 F 1 1 8 0 7 1 2 196
11 M 3 1 3 1 7 1 2 196
11 M 5 5 3 1 6 0 1 72
11 M 1 2 3 1 7 1 1 245
12 F 1 9 11 0 7 0 6 196
12 M 5 2 3 1 5 0 1 125
12 F 5 13 3 0 7 0 6 150
12 M 0 2 3 1 7 0 2 98
13 F 5 3 3 0 5 0 1 215
13 M 0 4 3 1 5 0 1 625
13 M 2 25 3 1 7 1 2 784
13 M 1 1 1 1 7 0 99 480
13 M 2 27 3 1 7 0 2 725
;

2 REPLIES 2
Ksharp
Super User
1) PROC MI
2) PROC LOGISTIC or PROC HPSPLIT or PROC GENMOD

Yurie
Fluorite | Level 6

Thanks so much. I will try the procedures that you mentioned here. 

hackathon24-white-horiz.png

The 2025 SAS Hackathon has begun!

It's finally time to hack! Remember to visit the SAS Hacker's Hub regularly for news and updates.

Latest Updates

How to Concatenate Values

Learn how use the CAT functions in SAS to join values from multiple variables into a single value.

Find more tutorials on the SAS Users YouTube channel.

SAS Training: Just a Click Away

 Ready to level-up your skills? Choose your own adventure.

Browse our catalog!

Discussion stats
  • 2 replies
  • 1161 views
  • 0 likes
  • 2 in conversation