Good morning SAS friends:
I have this data set:
data have;
input box length weight ;
cards;
1 8.1 6.3
1 9.1 9.6
1 10.2 11.6
1 11.9 18.5
1 12.2 26.2
1 13.8 36.1
1 14.8 40.1
1 15.7 47.3
2 16.6 65.6
2 17.7 69.4
2 18.7 76.4
2 19 82.5
2 20.6 106.6
2 21.9 119.8
2 22.9 169.2
2 23.5 173.3
;
using this data set, i apply two regressions, one for box 1 and other for box 2, resulting some tables, the first one for ANOVA and the second one indicating the estimates of the variables, the last of the is the main reason to note:
For box 1:
Parameter Estimates | |||||
---|---|---|---|---|---|
Variable | DF | Parameter Estimate |
Standard Error |
t Value | Pr > |t| |
Intercept | 1 | -42.10680 | 5.35822 | -7.86 | 0.0002 |
length | 1 | 5.55902 | 0.43770 | 12.70 | <.0001 |
and for Box 2:
Parameter Estimates | |||||
---|---|---|---|---|---|
Variable | DF | Parameter Estimate |
Standard Error |
t Value | Pr > |t| |
Intercept | 1 | -224.06587 | 41.01922 | -5.46 | 0.0016 |
length | 1 | 16.50296 | 2.02574 | 8.15 | 0.0002 |
The main objective of this problem is create a new data set containing both the intercept and slope for each box, like this:
Box | intercept | length |
1 | -42.1068 | 5.55902 |
2 | -224.06587 | 16.50296 |
Thanks in advance
proc reg data=have outest=parameters;
by box;
model weight=length;
run;
proc reg data=have outest=parameters;
by box;
model weight=length;
run;
Registration is now open for SAS Innovate 2025 , our biggest and most exciting global event of the year! Join us in Orlando, FL, May 6-9.
Sign up by Dec. 31 to get the 2024 rate of just $495.
Register now!
Learn how use the CAT functions in SAS to join values from multiple variables into a single value.
Find more tutorials on the SAS Users YouTube channel.
Ready to level-up your skills? Choose your own adventure.