ID | cell(char-variable) | home(char-variable) | work(char-variable) | Dup_phone | All_same | Dup_from |
1 | (XXX)XXX-XXXX | (XXX)XXX-XXXX | (YYY)YYY-YYYY | Y | N | CELL_HOME |
2 | (ZZZ)ZZZ-ZZZZ | (YYY)YYY-YYYY | (ZZZ)ZZZ-ZZZZ | Y | N | CELL_WORK |
3 | (ZZZ)ZZZ-ZZZZ | (YYY)YYY-YYYY | (YYY)YYY-YYYY | Y | N | HOME_WORK |
4 | (XXX)XXX-XXXX | (XXX)XXX-XXXX | (XXX)XXX-XXXX | Y | Y | ALL_DUP |
5 | (XXX)XXX-XXXX | (YYY)YYY-YYYY | (ZZZ)ZZZ-ZZZZ | N | N | NO_DUP |
6 | (XXX)XXX-XXXX | missing | missing | N | N | NO_DUP |
I have above dataset with ID, cell, home, work variables. For each ID, I need to look if we have any duplicate phone information and and also identify which ones are duplicates. I need to be able to create last three columns of above data. MIssing values shouldnt be accounted for equality. Any quick logic using data step? Thanks!
something like this
data have; infile datalines truncover ; informat id cell $12. home $12. work $12.;; input ID cell $ home $ work $ ; datalines; 1 (XXX)XXX-XXXX (XXX)XXX-XXXX (YYY)YYY-YYYY 2 (ZZZ)ZZZ-ZZZZ (YYY)YYY-YYYY (ZZZ)ZZZ-ZZZZ 3 (ZZZ)ZZZ-ZZZZ (YYY)YYY-YYYY (YYY)YYY-YYYY 4 (XXX)XXX-XXXX (XXX)XXX-XXXX (XXX)XXX-XXXX 5 (XXX)XXX-XXXX (YYY)YYY-YYYY (ZZZ)ZZZ-ZZZZ 6 (XXX)XXX-XXXX ; proc sql; select cell, home , work, case when ((cell = home) and (cell is not missing and home is not missing))or ((home =work) and (cell is not missing and home is not missing)) or ((cell =work)and (cell is not missing and home is not missing)) then 'Y' else 'N' end as dup_phone, case when cell = home and home =work and cell is not missing and home is not missing and work is not missing then 'Y' else 'N' end as all_same, case when cell = home and home =work and cell is not missing and home is not missing and work is not missing then 'ALL_DUP' when ((cell = home) and (cell is not missing and home is not missing)) then 'CELL_HOME' when((home =work) and (cell is not missing and home is not missing)) then 'HOME_WORK' when ((cell =work)and (cell is not missing and home is not missing)) then 'CELL_WORK' else 'NO_DUP' end as Dup_from from have;
data have;
infile datalines truncover ;
informat id cell $12. home $12. work $12.;;
input
ID cell $ home $ work $ ;
datalines;
1 (XXX)XXX-XXXX (XXX)XXX-XXXX (YYY)YYY-YYYY
2 (ZZZ)ZZZ-ZZZZ (YYY)YYY-YYYY (ZZZ)ZZZ-ZZZZ
3 (ZZZ)ZZZ-ZZZZ (YYY)YYY-YYYY (YYY)YYY-YYYY
4 (XXX)XXX-XXXX (XXX)XXX-XXXX (XXX)XXX-XXXX
5 (XXX)XXX-XXXX (YYY)YYY-YYYY (ZZZ)ZZZ-ZZZZ
6 (XXX)XXX-XXXX
;
run;
data want;
if _n_=1 then do;
length k $ 100;
declare hash h();
h.definekey('k');
h.definedone();
end;
set have;
length dup_phone all_same $ 1 dup_from temp $ 200;
array x{*} $ cell home work;
do i=1 to dim(x);
k=x{i};
h.replace();
end;
if h.num_items=1 then do;
if cmiss(of x{*})=0 then do;dup_phone='Y';dup_from='All_dup';end;
else do;dup_phone='N';dup_from='All_missing';end;
all_same='Y';
end;
else do;
dup_phone='N';dup_from='No_dup';
do i=1 to dim(x)-1;
do j=i+1 to dim(x);
if not missing(x{i}) and not missing(x{j}) and x{i}=x{j} then do;
yes=1; dup_phone='Y';temp=catx('|',temp,cats(vname(x{i}),'_',vname(x{j})));
end;
end;
end;
if yes then dup_from=temp;
all_same='N';
end;
h.clear();
drop i j k temp yes;
run;
Join us for SAS Innovate 2025, our biggest and most exciting global event of the year, in Orlando, FL, from May 6-9. Sign up by March 14 for just $795.
Learn how use the CAT functions in SAS to join values from multiple variables into a single value.
Find more tutorials on the SAS Users YouTube channel.
Ready to level-up your skills? Choose your own adventure.