I am looking for SAS code to analyze data generated from split-split plot design. Thank you for the support.
There is an example using proc anova
You might be able to adapt this split-split-split example for PROC ANOVA: http://support.sas.com/documentation/onlinedoc/stat/ex_code/132/aovspl3.html
Chris
Thank you all, I will try.
I was wondering if the Example in http://support.sas.com/documentation/onlinedoc/stat/ex_code/132/aovspl3.html can be used for random effects split-split plot models. Specifically, can Proc anova be used for mixed-effects Split-split plot designs? If not, can the same approach be used in Proc Mixed when for instance the subplot factor is considered as random?
You can reproduce the ANOVA results using PROC MIXED by adding the TEST statement E= terms to RANDOM statements in PROC MIXED.
data tires;
input fabric rubber rep @;
do cure=1 to 2;
do temp=1 to 2;
do piece=1 to 2;
input y @; output;
end;
end;
end;
datalines;
1 1 1 29 26 34 29 40 35 76 64
1 1 2 84 54 41 40 136 67 74 58
1 1 3 87 66 47 37 70 56 63 55
1 1 4 80 70 53 27 68 37 49 38
1 1 5 79 48 63 53 66 48 43 29
1 2 1 113 81 88 48 84 37 91 57
1 2 2 108 92 71 49 81 72 55 52
1 2 3 123 108 59 49 121 101 98 42
1 2 4 57 43 47 28 102 56 95 55
1 2 5 82 76 80 35 84 73 50 50
2 1 6 6 6 32 16 7 7 34 22
2 1 7 6 6 26 18 12 12 26 24
2 1 8 12 12 52 20 14 12 41 36
2 1 9 9 6 21 16 9 7 15 14
2 1 10 15 13 21 17 13 9 34 15
2 2 6 6 6 15 12 16 7 41 19
2 2 7 6 6 25 19 8 6 23 23
2 2 8 7 7 50 32 20 19 47 33
2 2 9 13 8 22 20 23 23 64 33
2 2 10 6 6 27 19 16 14 74 31
3 1 11 76 68 34 22 27 20 118 29
3 1 12 16 11 24 15 43 31 49 36
3 1 13 61 50 46 24 36 25 62 21
3 1 14 41 23 29 19 25 13 66 43
3 1 15 8 6 14 11 7 7 28 21
3 2 11 13 11 53 26 37 24 59 52
3 2 12 22 19 22 22 99 17 45 38
3 2 13 22 18 48 18 76 48 30 25
3 2 14 58 32 30 26 72 64 94 43
3 2 15 7 7 11 11 16 12 19 13
;
proc anova;
classes fabric rubber rep cure temp piece;
model y=fabric rep(fabric)
rubber rubber*fabric
rubber*rep(fabric)
cure cure*fabric cure*rubber
cure*rubber*fabric
cure*rubber*rep(fabric)
temp temp*fabric temp*rubber temp*fabric*rubber
temp*cure temp*cure*fabric temp*cure*rubber
temp*cure*fabric*rubber
temp*cure*rubber*rep(fabric);
test h=fabric e=rep(fabric);
test h=rubber rubber*fabric e=rubber*rep(fabric);
test h=cure cure*fabric cure*rubber cure*rubber*fabric
e=cure*rubber*rep(fabric);
test h=temp temp*fabric temp*rubber temp*fabric*rubber
temp*cure temp*cure*fabric temp*cure*rubber
temp*cure*fabric*rubber
e=temp*cure*rubber*rep(fabric);
title 'Split-split-split Plot Design: Tire Experiment';
run; quit;
proc mixed;
class fabric rubber rep cure temp piece;
model y=fabric /*rep(fabric)*/
rubber rubber*fabric
/*rubber*rep(fabric)*/
cure cure*fabric cure*rubber
cure*rubber*fabric
/*cure*rubber*rep(fabric)*/
temp temp*fabric temp*rubber temp*fabric*rubber
temp*cure temp*cure*fabric temp*cure*rubber
temp*cure*fabric*rubber
/*temp*cure*rubber*rep(fabric)*/;
random rep(fabric);
random rubber*rep(fabric);
random cure*rubber*rep(fabric);
random temp*cure*rubber*rep(fabric);
lsmeans rubber*fabric / diff;
title 'Split-split-split Plot Design: Tire Experiment';
run; quit;
Thank you. I got it like that and it works perfectly well.
Registration is open! SAS is returning to Vegas for an AI and analytics experience like no other! Whether you're an executive, manager, end user or SAS partner, SAS Innovate is designed for everyone on your team. Register for just $495 by 12/31/2023.
If you are interested in speaking, there is still time to submit a session idea. More details are posted on the website.
Learn the difference between classical and Bayesian statistical approaches and see a few PROC examples to perform Bayesian analysis in this video.
Find more tutorials on the SAS Users YouTube channel.