BookmarkSubscribeRSS Feed
☑ This topic is solved. Need further help from the community? Please sign in and ask a new question.
meghbali14
Fluorite | Level 6

Dear Friends,

When I run the PROC MIXED procedure, in the SAS 9.4 result, I found the “Non-est” for one group (in my set of data, group 2). Please let me know how to solve this problem? Thank you very much in advance.

 

data chew_act_cov;

input number  Name$  day  group  RUMINATETIME  EATTIME  TOTALCHEWINGTIME  RUMINATECHEWSPERMINUTE;

cards;

2 Kiana 1     1     512.33     234.75      747.08      55.35

2 Kiana 2     1     557.6       238.55      796.15      54.74

2 Kiana 3     1     606.17     272.25      878.42      59.57

2 Kiana 4     1     573.43    185.9        759.33       55.16

4 Babsi 1     1     428.25     307.68     735.93       61.80

4 Babsi 2     1     567.3       397.55      964.85      70.08

4 Babsi 3     1     567.3       397.55      964.85      70.08

4 Babsi 4     1     592.58     414.98      1007.57    70.57

4 Babsi 5     1     538.13      409.6        947.73     60.41

4 Babsi 6     1     498.42      309.98      808.4       62.34

5 Utah  1     1     493.37      429.57       922.93     51.67

5 Utah  2     1     495.32      438.32       933.63     60.63

6 Uruguay     1     1     479.65      146.88       626.53    43.95

6 Uruguay     2     1     648.48     180.57        829.05      60.76

6 Uruguay     3     1     667.55      222.9          890.45      57.94

6 Uruguay     4     1     680.93     171.82        852.75      54.65

6 Uruguay     5     1     683.13     162.23        845.37      60.12

7 Polli 1     1     421.93       239.68         661.62        52.46

7 Polli 2     1     306.05       214          520.05      41.65

7 Polli 3     1     214.8        279.08      493.88      36.05

17 Prima 1     1     448.92   197.57      646.48     57.23

17 Prima 2     1     550.47    209.9       760.37     57.72

17 Prima 3     1     518.18    210.45      728.63    59.96

17 Prima 4     1     496.22   171.1          667.32    55.42

17 Prima 5     1     520.12    171.88       692        56.69

25 Zoey  1     1     88.1         180.3       268.4      19.34

25 Zoey  2     1     72.83       215.55     288.39     17.11

25 Zoey  3     1     78.57      192.08      270.65      19.26

26 Anna  1     1     592.82    328.95      921.77      74.45

26 Anna  2     1     530.55      345.15      875.7      68.13

10 Bella 1     2     539.95      455.317    995.27       55.27

10 Bella 2     2     565.1        435.9        1001       64.05

10 Bella 3     2     539.63      444.75      984.38     57.025

10 Bella 4     2     529.9        416.42      946.32      60.54

10 Bella 5     2     577.42       407.08      984.5       63.42

12 Mala  1     2     456.28      358.05      814.33      57.85 

12 Mala  2     2     606.7        393.23      999.93      74.71 

12 Mala  3     2     580.6       444.52      1025.12     75.04

12 Mala  4     2     538.93      372.2        911.13      65.26

14 Wendy 1     2     420.87    276.42     697.28      46.49

14 Wendy 2     2     586.95      349.73   936.68     68.89

14 Wendy 3     2     573.27     392.8      966.07     68.46

14 Wendy 4     2     534.65      363.15   897.8        62.34

18 Mona  1     2     430.42       300.08   730.5       56.42

18 Mona  2     2     577.92      402.03    979.95      70.58

18    Mona  3     2     633.47     332.7       966.17      63.35

18 Mona  4     2     635.35     378.65     1014        73.07

18 Mona  5     2     578.28      353.4       931.68    70.91

21 Peggy 1     2     453.73       347.95    801.68   42.48

21 Peggy 2     2     572.6       458.18     1030.78   66.99

21 Peggy 3     2     600.8      401.62      1002.42   64.48

21 Peggy 4     2     560.22     476.95      1037.16    61.47

21 Peggy 5     2     617.82     417.9       1035.72      58.71

22 Panama      1     2     355.95      410.68      766.63     46.36

22 Panama      2     2     508.4        414.63      923.03    1583.50

22 Panama      3     2     544.17      473.7 1017.87         59.46

22 Panama      4     2     578.25      391.25      969.5     74.88

22 Panama      5     2     580.02      418.43     998.45      68.03

24 Bianca      1     2     487.53        368.15      855.68     48.79

24 Bianca      2     2     514.52      480.73       995.25      51.77

24 Bianca      3     2     516.03      445.52       961.55      56.87

24 Bianca      4     2     514.88      387.35      902.23       56.00

;

proc mixed;

class Name day group;

model RUMINATETIME=group day group*day;

repeated day/type=ar(1) sub=Name(group);

lsmeans group;

run;

proc mixed;

class Name day group;

model       EATTIME=group day group*day;

repeated day/type=ar(1) sub=Name(group);

lsmeans group;

run;

proc mixed;

class Name day group;

model       TOTALCHEWINGTIME=group day group*day;

repeated day/type=ar(1) sub=Name(group);

lsmeans group;

run;

proc mixed;

class Name day group;

model RUMINATECHEWSPERMINUTE=group day group*day;

repeated day/type=ar(1) sub=Name(group);

lsmeans group;

run;

1 ACCEPTED SOLUTION

Accepted Solutions
SteveDenham
Jade | Level 19

I am expand a bit on @PaigeMiller 's response. If you fit a model with main effects and an interaction, and you have a missing cell, the main effects will be non-estimable.  However, if you fit a model that contains ONLY the interaction (a one-way model often called a "means model"), and use an LSMESTIMATE statement you can calculate main effect means and standard errors. Main effect F tests can also be calculated within LSMESTIMATE statements as well, using the JOINT and/or FTEST options.

 

SteveDenham 

View solution in original post

6 REPLIES 6
PaigeMiller
Diamond | Level 26

There is an empty cell, with 0 data points, where day is 6 and group is 2. Interactions cannot be estimated when there are cells with 0 data points; and in addition some of the LSMEANS are non-estimable.

 

Possible paths forward is to remove day 6 from the analysis, or remove the interaction from the model.

--
Paige Miller
SteveDenham
Jade | Level 19

I am expand a bit on @PaigeMiller 's response. If you fit a model with main effects and an interaction, and you have a missing cell, the main effects will be non-estimable.  However, if you fit a model that contains ONLY the interaction (a one-way model often called a "means model"), and use an LSMESTIMATE statement you can calculate main effect means and standard errors. Main effect F tests can also be calculated within LSMESTIMATE statements as well, using the JOINT and/or FTEST options.

 

SteveDenham 

Gimlet
Calcite | Level 5

I am interested in producing main effect F Tests within LSMESTIMATE using the joint option. Could you please point us to some example code?

PaigeMiller
Diamond | Level 26

@Gimlet wrote:

I am interested in producing main effect F Tests within LSMESTIMATE using the joint option. Could you please point us to some example code?


@Gimlet please start a new thread and explain your question and explain the data, in detail, from the beginning. People will be happy to help you in a new thread which contains a clear explanation of your problem/question. Do not discuss this further in this thread.

--
Paige Miller
meghbali14
Fluorite | Level 6

Dear Paige Miller,

 

Thanks for your response. The first path didn't worked, after removing the day 6 for one of cow, but I also had non-estimated error.

Fortunately, the second path you suggested was worked. I removed the interaction in the model and then get the results. Thank you very much.

 

All the best,

Mansour

hackathon24-white-horiz.png

The 2025 SAS Hackathon Kicks Off on June 11!

Watch the live Hackathon Kickoff to get all the essential information about the SAS Hackathon—including how to join, how to participate, and expert tips for success.

YouTube LinkedIn

What is Bayesian Analysis?

Learn the difference between classical and Bayesian statistical approaches and see a few PROC examples to perform Bayesian analysis in this video.

Find more tutorials on the SAS Users YouTube channel.

SAS Training: Just a Click Away

 Ready to level-up your skills? Choose your own adventure.

Browse our catalog!

Discussion stats
  • 6 replies
  • 2836 views
  • 2 likes
  • 5 in conversation