BookmarkSubscribeRSS Feed
vnreddy
Quartz | Level 8

dataset ln_mon_ref
LNo 12_Month_A1 12_Month_A6 12_Month_Base 12_Month_A2 12_Month_A4
23 290.7546354 448.57426097 1880.3844491 1116.960121 406.90120716
24 0.1278847503 0.1573367909 0.5645658305 0.3878716946 0.1324158737
25 56.02135594 65.7289856 282.42013204 174.8432417 59.878547019

dataset sc_original
Scenario Original 10/30/30/30 33/0/33/33/0 50/0/0/50/0 50/0/25/25/0
12_Month_A1 0.1071 0 0 0 0
12_Month_A6 0.1071 0.3 0 0 0
12_Month_Base 0.4464 0.1 0.333333333 0.5 0.5
12_Month_A2 0.2683 0.3 0.333333333 0 0.25
12_Month_A4 0.0711 0.3 0.333333333 0.5 0.25

based on LNO column 12_Month_A1 column should divide and multiply original*10/30/30/30 based on scenario column
from dataset sc_original as shown below example calculation.
I need four addition column sc_30_10,sc_33_33,sc_50_50,sc_50_25 each column should give different scenrio results
as shown in Expected output

calculation example:
scenario_30_10
=290.7546354/0.1071*0+448.57426097/0.1071*0.3+1880.3844491/0.4464*0.1+1116.960121/0.2683*0.3+406.90120716/0.0711*0.3
=0.1278847503/0.1071*0+0.1573367909/0.1071*0.3+0.5645658305/0.4464*0.1+0.3878716946/0.2683*0.3+0.1324158737/0.0711*0.3
=56.02135594/0.1071*0+65.7289856/0.1071*0.3+282.42013204/0.4464*0.1+174.8432417/0.2683*0.3+59.878547019/0.0711*0.3

scenario_33_33
=290.7546354/0.1071*0+448.57426097/0.1071*0+1880.3844491/0.4464*0.333333333+1116.960121/0.2683*0.333333333+406.90120716/0.0711*0.333333333
=0.1278847503/0.1071*0+0.1573367909/0.1071*0+0.5645658305/0.4464*0.333333333+0.3878716946/0.2683*0.333333333+0.1324158737/0.0711*0.333333333
=56.02135594/0.1071*0+65.7289856/0.1071*0+282.42013204/0.4464*0.333333333+174.8432417/0.2683*0.333333333+59.878547019/0.0711*0.333333333

scenario_50_50
=290.7546354/0.1071*0+448.57426097/0.1071*0+1880.3844491/0.4464*0.5+1116.960121/0.2683*0+406.90120716/0.0711*0.5
=0.1278847503/0.1071*0+0.1573367909/0.1071*0+0.5645658305/0.4464*0.5+0.3878716946/0.2683*0+0.1324158737/0.0711*0.5
=56.02135594/0.1071*0+65.7289856/0.1071*0+282.42013204/0.4464*0.5+174.8432417/0.2683*0+59.878547019/0.0711*0.5

scenario_50_25
=290.7546354/0.1071*0+448.57426097/0.1071*0+1880.3844491/0.4464*0.5+1116.960121/0.2683*0.25+406.90120716/0.0711*0.25
=0.1278847503/0.1071*0+0.1573367909/0.1071*0+0.5645658305/0.4464*0.5+0.3878716946/0.2683*0.25+0.1324158737/0.0711*0.25
=56.02135594/0.1071*0+65.7289856/0.1071*0+282.42013204/0.4464*0.5+174.8432417/0.2683*0.25+59.878547019/0.0711*0.25

Expected output:
LNo 12_Month_A1 12_Month_A6 12_Month_Base 12_Month_A2 12_Month_A4 sc_30_10 sc_33_33 sc_50_50 sc_50_25
23 290.7546354 448.574261 1880.384449 1116.960121 406.9012072 4644 4699 4968 4578
24 0.12788475 0.157336791 0.564565831 0.387871695 0.132415874 2 2 2 1
25 56.02135594 65.7289856 282.420132 174.8432417 59.87854702 696 709 737 690

 

1 REPLY 1
ChrisNZ
Tourmaline | Level 20

Interesting how a long wall of unformatted text that includes typos and no usable data provided as code receives no reply, isn't it?

 

Put some effort in your question if you want volunteers to put some effort into solving your problem.

 

SAS INNOVATE 2024

Innovate_SAS_Blue.png

Registration is open! SAS is returning to Vegas for an AI and analytics experience like no other! Whether you're an executive, manager, end user or SAS partner, SAS Innovate is designed for everyone on your team. Register for just $495 by 12/31/2023.

If you are interested in speaking, there is still time to submit a session idea. More details are posted on the website. 

Register now!

What is Bayesian Analysis?

Learn the difference between classical and Bayesian statistical approaches and see a few PROC examples to perform Bayesian analysis in this video.

Find more tutorials on the SAS Users YouTube channel.

Get the $99 certification deal.jpg

 

 

Back in the Classroom!

Select SAS Training centers are offering in-person courses. View upcoming courses for:

View all other training opportunities.

Discussion stats
  • 1 reply
  • 462 views
  • 0 likes
  • 2 in conversation