Hello everyone,
I have 50 time-series, for which I need to run a GARCH model for volatility forecasting. What I want to do is to avoid running each model seperately (red highlighted). Any ideas on how I could do that?
Many thanks in advance.
data data;
infile "C:\Users\kg25\Desktop\Test Data.txt" dsd dlm='09'x firstobs=2 lrecl=32767 stopover;
input date:ddmmyy. (a1-a50)(:numx.??);
format date ddmmyy10.;
run;
*Create Returns and Squared Returns;
data data2;set data;
vars(*) a1--a50;
array r(50);
do i=1 to dim(vars);
end; drop i;
var(*) r1--r50;
array rsq(50);
do i=1 to dim(var);
end; drop i;
run;
*create time variable;
data data2;set data2(firstobs=2);time + 1;
by date;
run;
*Choose in-sample;
data data3;set data2(obs=1303);
run;
*Create observations for 1 year;
data data4;
do time = 1304 to 1564;output;end;
run;
*merge data;
data data5;
merge data3 data4;by time;
run;
*Estimate AR(1)-Garch (1,1) model;
proc autoreg data=data5;
model r1= / nlag=1 garch=(q=1, p=1) maxit=50 noprint;
output out=data6 cev=vhat1;
run;
*merge data;
data data7;
merge data6 data2;by time;
run;
*Compute Mean Absolute Error and Root Mean Square Error;
data data8;set data7(firstobs=1304);
MAE=abs(rsq1-vhat1);
RMSE=sqrt(rsq1-vhat1);
run;
proc means data=data8 mean stderr prt;
var mae rmse;
run;
Transpose your data.
If you have for example r1-r50
data transpose_reg;
set data5;
array r(50) r1-r50;
do i=1 to 50;
reg_var=r(i);
output;
end;
drop r1-r50;
run;
Proc sort data=transpose_reg;
by i;
run;
proc autoreg data=transpose_reg;
BY i;
model reg_var= / nlag=1 garch=(q=1, p=1) maxit=50 noprint;
output out=data6 cev=vhat;
run;
Transpose your data.
If you have for example r1-r50
data transpose_reg;
set data5;
array r(50) r1-r50;
do i=1 to 50;
reg_var=r(i);
output;
end;
drop r1-r50;
run;
Proc sort data=transpose_reg;
by i;
run;
proc autoreg data=transpose_reg;
BY i;
model reg_var= / nlag=1 garch=(q=1, p=1) maxit=50 noprint;
output out=data6 cev=vhat;
run;
Many thanks Reeza! It worked in this way as well!
Join us for SAS Innovate 2025, our biggest and most exciting global event of the year, in Orlando, FL, from May 6-9.
Early bird rate extended! Save $200 when you sign up by March 31.
Learn the difference between classical and Bayesian statistical approaches and see a few PROC examples to perform Bayesian analysis in this video.
Find more tutorials on the SAS Users YouTube channel.
Ready to level-up your skills? Choose your own adventure.