I am trying to import a MSAccess database and it's not working. I am running Windows 7 64 bit. My MS Office software is 2010. My SAS is 9.4 for 64 bit. Therefore, every piece of documentation I have found which talks about version incompatibility and offers a solution is NOT WORKING.
Here is what I've done:
1 PROC IMPORT TABLE = "Trends" DBMS = ACCESS OUT = WORK.SASTrends REPLACE; 2 DATABASE = "C:\Users\bennetde\Documents\Trends in Early Onset study\Trends in Early Onset 2 ! (clean).accdb"; 3 RUN; ERROR: Connect: Class not registered ERROR: Error in the LIBNAME statement. Connection Failed. See log for details. NOTE: The SAS System stopped processing this step because of errors. NOTE: PROCEDURE IMPORT used (Total process time): real time 0.73 seconds cpu time 0.07 seconds
And:
4 LIBNAME libref ACCESS PATH = "C:\Users\bennetde\Documents\Trends in Early Onset 4 ! study\Trends in Early Onset (clean).accdb"; ERROR: Connect: Class not registered ERROR: Error in the LIBNAME statement
Please help me solve this problem so I can import my MSAccess database. Thank you.
You max have a bitness problem (Office 32bit, SAS 64)
Or Access to PC Files is not licensed or not properly installed.
I suspect your MS Office is 32-bit and because your SAS is 64-bit you are getting the classic "Class not registered" error. To bridge the bitness difference you can either use the SAS PC File Server which is a download from SAS or you could download the 64-bit ACE engine from Microsoft. We use the latter and it works well.
It does say MS Office is 32 bit. Thanks! I will try to fix this and then see what happens.
Importing a 64bit or 32bit MS Access table into SAS using R
I hesitate to answer because MS has so many different structures for
MS access databases. Really beed a sample from your database.
If you have IML/R you can create a SAS dataset directly without
going through a STATA dataset, as I have done below.
HAVE a SAS supplied mdb database with table customers
=====================================================
C:\Progra~1\sashome\SASFoundation\9.4\access\sasmisc\demo.mdb d:\mdb\demo.mdb
WANT SAS dataset work.customers
===
CUSTOMER_
Obs ID STATE ZIP_CODE COUNTRY
1 14324742 CA 95123 USA
2 14569877 NC 27514 USA
3 14898029 MD 20850 USA
4 15432147 MI 49001 USA
5 18543489 TX 78701 USA
6 19783482 VA 22090 USA
7 19876078 CA 93274 USA
8 26422096 NA 75014 France
9 26984578 NA 5110 Austria
10 27654351 NA 5010 Belgium
11 28710427 HV 3607 Netherlands
12 29834248 NA Z Britain
13 31548901 BC Z Canada
14 38763919 NA 1405 Argentina
15 39045213 SP 1051 Brazil
16 43290587 NA Z Japan
17 43459747 NA 3181 Australia
18 46543295 NA Z Japan
19 46783280 NA 2374 Singapore
20 48345514 NA Z United Arab Emirates
WORKING CODE
============
customers = sqlQuery(myDB, paste('select * from customers'));
FULL SOLUTION
* SAS comes with sample access databses so lets copy one for demo purposes.
x "copy C:\Progra~1\sashome\SASFoundation\9.4\access\sasmisc\demo.mdb d:\mdb\demo.mdb";
demo.mdb has a customer table
Here I am using 64bit windows, 64 bit SAS, 64 bit office in the first program
and 32 bit R in the second. R installs bothe 32bit and 64bit under the same root.
* this creates a SAS dataset much like IML/R
%utl_submit_wps64('
options set=R_HOME "C:/Program Files/R/R-3.3.1";
libname wrk "%sysfunc(pathname(work))";
proc r;
submit;
library(RODBC);
myDB<-odbcDriverConnect("Driver={Microsoft Access Driver (*.mdb, *.accdb)};DBQ=d:/mdb/demo.mdb");
mtcarsmdb<-sqlQuery(myDB, paste("select * from customers"));
mtcarsmdb;
close(myDB);
endsubmit;
import r=mtcarsmdb data=wrk.mtcarsmdb;
run;quit;
');
mtcarsmdb is a SAS dataset in the parent work directory
* Using 32 bit SAS
%utl_submit_r32("
library(RODBC);
library(foreign);
myDB <- odbcConnectAccess('d:/mdb/demo.mdb',uid='admin',pwd='');
sqlTables(myDB);
customers<- sqlQuery(myDB, paste('select * from customers'));
write.dta(customers,convert.factors='string',version = 10L, 'd:/dta/customers.dta')
");
* you do not need this with IML/R;
filename imp 'd:/dta/customers.dta' lrecl=32756;
proc import
out=work.customers
file=imp
dbms=DTA replace;
run;
proc print data=customers;
var customer_id--country;
run;quit;
32 Bit R log LOG
library(RODBC);
library(foreign);
myDB <- odbcConnectAccess('d:/mdb/demo.mdb',uid='admin',pwd='');
sqlTables(myDB);
customers<- sqlQuery(myDB, paste('select * from customers'));
write.dta(customers,convert.factors='string',version = 10L, 'd:/dta/customers.dta')
TABLE_CAT TABLE_NAME TABLE_TYPE
10 d:\\mdb\\demo Customers TABLE
11 d:\\mdb\\demo Employees TABLE
12 d:\\mdb\\demo Invoice TABLE
13 d:\\mdb\\demo Orders TABLE
SAS
807 filename imp 'd:/dta/customers.dta' lrecl=32756;
808 proc import
809 out=work.customers
810 file=imp
811 dbms=DTA replace;
812 run;
NOTE: Variable Name Change. Customer ID -> Customer_ID
NOTE: Variable Name Change. Zip Code -> Zip_Code
NOTE: Variable Name Change. First Ordered Date -> First_Ordered_Date
NOTE: The import data set has 20 observations and 10 variables.
NOTE: WORK.CUSTOMERS data set was successfully created.
NOTE: PROCEDURE IMPORT used (Total process time):
real time 0.00 seconds
user cpu time 0.00 seconds
system cpu time 0.00 seconds
memory 345.03k
OS Memory 13800.00k
Timestamp 03/01/2017 12:22:32 PM
Step Count 106 Switch Count 0
813 proc print data=customers;
814 var customer_id--country;
815 run;
NOTE: There were 20 observations read from the data set WORK.CUSTOMERS.
NOTE: PROCEDURE PRINT used (Total process time):
real time 0.05 seconds
user cpu time 0.00 seconds
system cpu time 0.06 seconds
memory 326.71k
OS Memory 13800.00k
Timestamp 03/01/2017 12:22:32 PM
Step Count 107 Switch Count 0
815 ! quit;
FYI IML/R and WPS/R can create SAS datasets from all these input data types.
utl_submit_wps64('
options set=R_HOME "C:/Program Files/R/R-3.3.1";
libname wrk "%sysfunc(pathname(work))";
library(foreign);
proc r;
submit;
library(rio);
library(foreign);
library(haven);
mtcarscsv <-import("d:/rio/mtcars.csv");
mtcarstsv <-import("d:/rio/mtcars.tsv");
mtcarsxml <-import("d:/rio/mtcars.xml");
mtcarshtml <-import("d:/rio/mtcars.html");
mtcarsjson <-import("d:/rio/mtcars.json");
mtcarsxlsx <-import("d:/rio/mtcars.xlsx");
mtcarsdta <-read.dta("d:/rio/mtcars.dta");
mtcarssav <-read_sav("d:/rio/mtcars.sav");
mtcarsdbf <-import("d:/rio/mtcars.dbf");
mtcarsods <-import("d:/rio/mtcars.ods");
mtcarsdif <-read.DIF("d:/rio/mtcars.dif",header=TRUE,transpose=TRUE);
endsubmit;
import r=mtcarscsv data=wrk.mtcarscsv;
import r=mtcarstsv data=wrk.mtcarstsv;
import r=mtcarsxml data=wrk.mtcarsxml;
import r=mtcarsjson data=wrk.mtcarsjson;
import r=mtcarsdta data=wrk.mtcarsdta;
import r=mtcarsxlsx data=wrk.mtcarsxlsx;
import r=mtcarshtml data=wrk.mtcarshtml;
import r=mtcarssav data=wrk.mtcarsav;
import r=mtcarsdbf data=wrk.mtcarsdbf;
import r=mtcarsdif data=wrk.mtcarsdif;
run;quit;
');
%utl_submit_wps64('
options set=R_HOME "C:/Program Files/R/R-3.3.1";
libname wrk "%sysfunc(pathname(work))";
proc r;
submit;
library(RODBC);
myDB<-odbcDriverConnect("Driver={Microsoft Access Driver (*.mdb, *.accdb)};DBQ=d:/mdb/HelpfulContacts.mdb");
mtcarsmdb<-sqlQuery(myDB, paste("select * from mtcars"));
mtcarsmdb;
close(myDB);
endsubmit;
import r=mtcarsmdb data=wrk.mtcarsmdb;
run;quit;
');
Or you could go the totally easy way and export your data from Access to a textual format (csv), and use a simple data step to read that.
No licenses or modules needed, and no bitness problems. And will work 20 years from now, while you may never know what idiocies MS does with their format next, and through what hoops other software has to jump to deal with it.
TEXTUALITY RULES!
Join us for SAS Innovate 2025, our biggest and most exciting global event of the year, in Orlando, FL, from May 6-9. Sign up by March 14 for just $795.
Learn the difference between classical and Bayesian statistical approaches and see a few PROC examples to perform Bayesian analysis in this video.
Find more tutorials on the SAS Users YouTube channel.
Ready to level-up your skills? Choose your own adventure.