Hi I have categorical data in mulitple columns like this:
ID | T1 | T2 | T3 | T4 | M1 | M2 | M3 |
1 | NN | NN | YN | NN | YY | NY | NN |
2 | YN | NN | YN | YN | NY | YN | NN |
3 | YY | YY | YN | YY | NY | YN | NN |
4 | NY | YY | NY | NY | YN | NN | NN |
5 | NN | NN | YN | NN | YY | NY | NN |
6 | YN | NN | YN | YN | NY | YN | NN |
7 | YY | YY | YN | YY | NY | YN | NN |
8 | NY | YY | NY | NY | YN | NN |
NN |
The categorical values (NY,NN, YN, and YY) are the same in each of the columns.
I would like aggregated count output for the categories in each column as a single table, like:
T1 | T2 | T3 | T4 | M1 | M2 | M3 | |
NN | 2 | 4 | 2 | 2 | 7 | ||
YN | 2 | 6 | 2 | 2 | 4 | 1 | |
YY | 2 | 4 | 2 | 2 | |||
NY | 2 | 2 | 2 | 4 | 2 |
Can anyone suggest some code that would do this?
Appreciate your help,
Celia.
It's not quite clear if you are looking for a report or a data set. But here is a step in the right direction in any case:
data want;
set have;
array in {7} t1-t4 m1-m3;
do i=1 to 7;
value = in{i};
category = vname(in{i});
output;
end;
keep value category;
run;
proc freq data=want;
tables value * category;
run;
You can always add options to the TABLES statement (such as norow nocolumn nopercent) to change the appearance of the table.
It's not quite clear if you are looking for a report or a data set. But here is a step in the right direction in any case:
data want;
set have;
array in {7} t1-t4 m1-m3;
do i=1 to 7;
value = in{i};
category = vname(in{i});
output;
end;
keep value category;
run;
proc freq data=want;
tables value * category;
run;
You can always add options to the TABLES statement (such as norow nocolumn nopercent) to change the appearance of the table.
If you want a dataset, here is one way:
data have; infile cards dlm='09'x; input ID (T1 T2 T3 T4 M1 M2 M3) ($); cards; 1 NN NN YN NN YY NY NN 2 YN NN YN YN NY YN NN 3 YY YY YN YY NY YN NN 4 NY YY NY NY YN NN NN 5 NN NN YN NN YY NY NN 6 YN NN YN YN NY YN NN 7 YY YY YN YY NY YN NN 8 NY YY NY NY YN NN NN ; ods output onewayfreqs=need; proc freq data=have; tables t1--m3; run; data need (drop=f_t1--m3); retain frequency; set need (drop=percent cum_freq cum_pct); array ts(*) f_t1--m3; table=scan(table,2); t=coalescec(of ts(*)); run; proc sort data=need; by t; run; proc transpose data=need out=want (drop=_:); by t; var frequency; id table; run; data want; retain t t1-t4 m1-m3; set want; run;
Art, CEO, AnalystFinder.com
Are you ready for the spotlight? We're accepting content ideas for SAS Innovate 2025 to be held May 6-9 in Orlando, FL. The call is open until September 16. Read more here about why you should contribute and what is in it for you!
Learn the difference between classical and Bayesian statistical approaches and see a few PROC examples to perform Bayesian analysis in this video.
Find more tutorials on the SAS Users YouTube channel.