SAS Community,
I am running a proc phreg with my code like so:
proc phreg data=;
model (t1,t2)*status(0)= variables;
output out=Miles
ressco=name1 name2
resmart=name1 name2;
_
Error 22-322: Syntax error, expecting one of the following: ;,/, ATRISK, DFBETA, LD, LMAX, LOGLOGS, LOGSURV, NUM_LEFT, OUT, RESDEV, RESMART, RESSCH, RESSCO, STDXBETA, SURVIVAL, WTRESSCH, XBETA.
Error 202-322: The option or parameter is not recognized and will be ignored
run;
I am curious to know why this is. Output is not allowed when data is set up via programming statements, but I did not use that. Also, when I remove the line for resmart, the code runs for the other output statistics.
Post your exact code and log please.
You have a space with Name_2
And you can't name them the same thing, name1/name2
Use the insert code icon (looks like {i}) to paste in SAS logs. Otherwise the forum will reformat to text to look like pretty paragraphs of text and mess up the formatting.
Your posted code is using the same variable names for different statistics. You need to give each output variable a different name.
Also your posted code has a space in the middle of the last output variable name.
It is easier to see if you use the insert SAS code icon (looks like the SAS run icon) as it will display in fixed font.
proc phreg ;
model (t1,t2)*status(0)= variables;
output out=Miles
ressco=name1 name2
resmart=name1 name 2
;
run;
SAS Community,
Here is my code...I am trying to run a proc phreg as follows:
proc phreg data=cars;
model (t1, t2)*status(0)=variables;
output out=gas
ressco=name1 name2 name3
resmart=name1 name2
_
;
run;
I get the following error messages for ressmart name2:
Error 22-322: Syntax error, expecting one of the following: ;, /, ATRISK, DFBETA, LD, LMAX, LOGLOGS, LOGSURV, NUM_LEFT, OUT, RESDEV, RESMART, RESSCH, RESSCO, STDXBETA, SURVIVAL, WTRESSCH, XBETA.
Error 202-322: The option or parameter is not recognized and will be ignored.
I did not use the programming statements method so not sure why this will not work? When I remove the ressmart line, the code runs for the other output statistics.
Please post the log with the code and the error. Use a codebox opened with the forum {i} menu icon to preserve formatting. The 322 type errors will usually show an _ where the error was detected and the codebox will preserve the formatting of the log text which the main window doesn't.
First I believe that you meant RESMART not RESSMART. If you see an _ under RESSMART that is the unrecognized option.
1. Extra S
resmart
vs
ressmart
2. OUTPUT Statement
OUTPUT Statement
specifies the statistics included in the OUTPUT data set and names the new variables that contain the statistics. Specify a keyword for each desired statistic (see the following list of keywords), an equal sign, and either a variable or a list of variables to contain the statistic. The keywords that accept a list of variables are DFBETA, RESSCH, RESSCO, and WTRESSCH. For these keywords, you can specify as many names in name as the number of explanatory variables specified in the MODEL statement. If you specify k names and k is less than the total number of explanatory variables, only the changes for the first k parameter estimates are output. The keywords and the corresponding statistics are as follows:
RESMART does not accept a list of variables
FYI - I'll merge your two posts, I'm not sure why you posted it twice.
@Wafflecakes please do not post the same question multiple times and do not edit the posts after the fact - especially your initial posts.
Any clarifications should go in a new post. Otherwise this makes it hard to follow a thread and understand what's happening if things are changing. This is more of a personal pet peeve, but it helps things flow.
My apologies. Any thoughts on how I would still generate the martingale residuals?
From what I'm reading, the martingale residual is a single value, not by variable. I could be mistaken, my Survival analysis is rusty.
This works for me:
data Myeloma;
input Time VStatus LogBUN HGB Platelet Age LogWBC Frac
LogPBM Protein SCalc;
label Time='Survival Time'
VStatus='0=Alive 1=Dead';
datalines;
1.25 1 2.2175 9.4 1 67 3.6628 1 1.9542 12 10
1.25 1 1.9395 12.0 1 38 3.9868 1 1.9542 20 18
2.00 1 1.5185 9.8 1 81 3.8751 1 2.0000 2 15
2.00 1 1.7482 11.3 0 75 3.8062 1 1.2553 0 12
2.00 1 1.3010 5.1 0 57 3.7243 1 2.0000 3 9
3.00 1 1.5441 6.7 1 46 4.4757 0 1.9345 12 10
5.00 1 2.2355 10.1 1 50 4.9542 1 1.6628 4 9
5.00 1 1.6812 6.5 1 74 3.7324 0 1.7324 5 9
6.00 1 1.3617 9.0 1 77 3.5441 0 1.4624 1 8
6.00 1 2.1139 10.2 0 70 3.5441 1 1.3617 1 8
6.00 1 1.1139 9.7 1 60 3.5185 1 1.3979 0 10
6.00 1 1.4150 10.4 1 67 3.9294 1 1.6902 0 8
7.00 1 1.9777 9.5 1 48 3.3617 1 1.5682 5 10
7.00 1 1.0414 5.1 0 61 3.7324 1 2.0000 1 10
7.00 1 1.1761 11.4 1 53 3.7243 1 1.5185 1 13
9.00 1 1.7243 8.2 1 55 3.7993 1 1.7404 0 12
11.00 1 1.1139 14.0 1 61 3.8808 1 1.2788 0 10
11.00 1 1.2304 12.0 1 43 3.7709 1 1.1761 1 9
11.00 1 1.3010 13.2 1 65 3.7993 1 1.8195 1 10
11.00 1 1.5682 7.5 1 70 3.8865 0 1.6721 0 12
11.00 1 1.0792 9.6 1 51 3.5051 1 1.9031 0 9
13.00 1 0.7782 5.5 0 60 3.5798 1 1.3979 2 10
14.00 1 1.3979 14.6 1 66 3.7243 1 1.2553 2 10
15.00 1 1.6021 10.6 1 70 3.6902 1 1.4314 0 11
16.00 1 1.3424 9.0 1 48 3.9345 1 2.0000 0 10
16.00 1 1.3222 8.8 1 62 3.6990 1 0.6990 17 10
17.00 1 1.2304 10.0 1 53 3.8808 1 1.4472 4 9
17.00 1 1.5911 11.2 1 68 3.4314 0 1.6128 1 10
18.00 1 1.4472 7.5 1 65 3.5682 0 0.9031 7 8
19.00 1 1.0792 14.4 1 51 3.9191 1 2.0000 6 15
19.00 1 1.2553 7.5 0 60 3.7924 1 1.9294 5 9
24.00 1 1.3010 14.6 1 56 4.0899 1 0.4771 0 9
25.00 1 1.0000 12.4 1 67 3.8195 1 1.6435 0 10
26.00 1 1.2304 11.2 1 49 3.6021 1 2.0000 27 11
32.00 1 1.3222 10.6 1 46 3.6990 1 1.6335 1 9
35.00 1 1.1139 7.0 0 48 3.6532 1 1.1761 4 10
37.00 1 1.6021 11.0 1 63 3.9542 0 1.2041 7 9
41.00 1 1.0000 10.2 1 69 3.4771 1 1.4771 6 10
41.00 1 1.1461 5.0 1 70 3.5185 1 1.3424 0 9
51.00 1 1.5682 7.7 0 74 3.4150 1 1.0414 4 13
52.00 1 1.0000 10.1 1 60 3.8573 1 1.6532 4 10
54.00 1 1.2553 9.0 1 49 3.7243 1 1.6990 2 10
58.00 1 1.2041 12.1 1 42 3.6990 1 1.5798 22 10
66.00 1 1.4472 6.6 1 59 3.7853 1 1.8195 0 9
67.00 1 1.3222 12.8 1 52 3.6435 1 1.0414 1 10
88.00 1 1.1761 10.6 1 47 3.5563 0 1.7559 21 9
89.00 1 1.3222 14.0 1 63 3.6532 1 1.6232 1 9
92.00 1 1.4314 11.0 1 58 4.0755 1 1.4150 4 11
4.00 0 1.9542 10.2 1 59 4.0453 0 0.7782 12 10
4.00 0 1.9243 10.0 1 49 3.9590 0 1.6232 0 13
7.00 0 1.1139 12.4 1 48 3.7993 1 1.8573 0 10
7.00 0 1.5315 10.2 1 81 3.5911 0 1.8808 0 11
8.00 0 1.0792 9.9 1 57 3.8325 1 1.6532 0 8
12.00 0 1.1461 11.6 1 46 3.6435 0 1.1461 0 7
11.00 0 1.6128 14.0 1 60 3.7324 1 1.8451 3 9
12.00 0 1.3979 8.8 1 66 3.8388 1 1.3617 0 9
13.00 0 1.6628 4.9 0 71 3.6435 0 1.7924 0 9
16.00 0 1.1461 13.0 1 55 3.8573 0 0.9031 0 9
19.00 0 1.3222 13.0 1 59 3.7709 1 2.0000 1 10
19.00 0 1.3222 10.8 1 69 3.8808 1 1.5185 0 10
28.00 0 1.2304 7.3 1 82 3.7482 1 1.6721 0 9
41.00 0 1.7559 12.8 1 72 3.7243 1 1.4472 1 9
53.00 0 1.1139 12.0 1 66 3.6128 1 2.0000 1 11
57.00 0 1.2553 12.5 1 66 3.9685 0 1.9542 0 11
77.00 0 1.0792 14.0 1 60 3.6812 0 0.9542 0 12
;
proc phreg data=myeloma;
model Time*VStatus(0)=LogBUN HGB Platelet Age LogWBC
Frac LogPBM Protein SCalc;
output out=gas
ressco=name1
resmart=name2
dfbeta=name3 name4 namd5;
;
run;
Registration is now open for SAS Innovate 2025 , our biggest and most exciting global event of the year! Join us in Orlando, FL, May 6-9.
Sign up by Dec. 31 to get the 2024 rate of just $495.
Register now!
Learn the difference between classical and Bayesian statistical approaches and see a few PROC examples to perform Bayesian analysis in this video.
Find more tutorials on the SAS Users YouTube channel.
Ready to level-up your skills? Choose your own adventure.