BookmarkSubscribeRSS Feed
NKormanik
Barite | Level 11

Wondering if pruning gives up too much valuable information.

 

Pruning.jpg

Yes, the model becomes smaller, and supposedly more understandable.

 

But all those tips being whacked contain at least pairs of variables that ought to be acknowledged.

 

What are your thoughts on this conundrum?

 

Thanks!

 

Nicholas Kormanik

 

 

 

 

2 REPLIES 2
PaigeMiller
Diamond | Level 26

This is true in any modeling, the larger the model (in this case the more branches), the better it will fit (apparently).

 

But there is also a concept called overfitting, which would usually lead to smaller models, as overfitting is not good and essentially is fitting noise. Those extra branches that should get pruned may in fact be overfitting. How can you tell if something is overfit? Usually, by either crossvalidation, or by fitting the model to a training data set, and then evaluating its performance on validation (and test) data sets

--
Paige Miller
Reeza
Super User
To be a contrarian, you can also be getting rid of the noise.

hackathon24-white-horiz.png

2025 SAS Hackathon: There is still time!

Good news: We've extended SAS Hackathon registration until Sept. 12, so you still have time to be part of our biggest event yet – our five-year anniversary!

Register Now

What is Bayesian Analysis?

Learn the difference between classical and Bayesian statistical approaches and see a few PROC examples to perform Bayesian analysis in this video.

Find more tutorials on the SAS Users YouTube channel.

SAS Training: Just a Click Away

 Ready to level-up your skills? Choose your own adventure.

Browse our catalog!

Discussion stats
  • 2 replies
  • 857 views
  • 2 likes
  • 3 in conversation