BookmarkSubscribeRSS Feed
🔒 This topic is solved and locked. Need further help from the community? Please sign in and ask a new question.
Cruise
Ammonite | Level 13

BMI percentile.png

I'd like to calculate percentile of BMI of all observation (person)  in data. Below is my attempt. I'm puzzled with resulting histogram on percentile (rank_BMI) . People with higher BMI percentile are at higher risk of being obese et.c. However, how is it possible that all percentiles are uniformly distributed 😞  Correct and expected "percentile of BMI for age" is also shown in the image below @ballardw 

 

 proc rank data=Mydata groups=100 out=ranked;
  var BMI;
  ranks rank_BMI;
 run;

 proc univariate data=ranked noprint;
   histogram rank_BMI/
      normal(noprint)
      nocurvelegend;
label rank_BMI="pctl of BMI"; 
run;BMI percentile.png

 

1 ACCEPTED SOLUTION

Accepted Solutions
ballardw
Super User

The issue with the shown plot is that you are sort of misunderstanding what the Proc Ranks is doing. Please see this result from your code on some data with two different distributions.

data example;
   do i= 1 to 10000;
      val = rand('normal',0,1);
      val2 = rand('exponential');
      output;
   end;
run;

proc rank data=example groups=100 out=ranked;
   var val val2;
   ranks rank_val rank_val2;
run;

proc univariate data=ranked noprint ;
   histogram rank_val/
      normal(noprint)
      nocurvelegend;
   histogram val/
      normal(noprint)
      nocurvelegend;
   label val='raw data normal';
   label rank_val="pctl of normal VAL";
   histogram rank_val2/
      normal(noprint)
      nocurvelegend;
   histogram val2/
      normal(noprint)
      nocurvelegend;
   label val2='raw data exponential';
   label rank_val2="pctl of exponential VAL2";
run;

 

 

Depending a number of setting your univariate graph of rank_val may look a bit odd depending on the number of bins univariate displays. The question I would actually ask is more why isn't your percentile actually flatter.

 

What does the histogram of your BMI variable look like?

View solution in original post

3 REPLIES 3
ballardw
Super User

The issue with the shown plot is that you are sort of misunderstanding what the Proc Ranks is doing. Please see this result from your code on some data with two different distributions.

data example;
   do i= 1 to 10000;
      val = rand('normal',0,1);
      val2 = rand('exponential');
      output;
   end;
run;

proc rank data=example groups=100 out=ranked;
   var val val2;
   ranks rank_val rank_val2;
run;

proc univariate data=ranked noprint ;
   histogram rank_val/
      normal(noprint)
      nocurvelegend;
   histogram val/
      normal(noprint)
      nocurvelegend;
   label val='raw data normal';
   label rank_val="pctl of normal VAL";
   histogram rank_val2/
      normal(noprint)
      nocurvelegend;
   histogram val2/
      normal(noprint)
      nocurvelegend;
   label val2='raw data exponential';
   label rank_val2="pctl of exponential VAL2";
run;

 

 

Depending a number of setting your univariate graph of rank_val may look a bit odd depending on the number of bins univariate displays. The question I would actually ask is more why isn't your percentile actually flatter.

 

What does the histogram of your BMI variable look like?

Reeza
Super User

Percentiles by definition break the data up into uniform groups. 

 

I don't think you want a histogram, I think you want the CDF from PROC UNIVARIATE on the raw data based on your comments. It does not match your graph though. 

 

 

sas-innovate-2024.png

📢

ANNOUNCEMENT

The early bird rate has been extended! Register by March 18 for just $695 - $100 off the standard rate.

 

Check out the agenda and get ready for a jam-packed event featuring workshops, super demos, breakout sessions, roundtables, inspiring keynotes and incredible networking events. 

 

Register now!

What is Bayesian Analysis?

Learn the difference between classical and Bayesian statistical approaches and see a few PROC examples to perform Bayesian analysis in this video.

Find more tutorials on the SAS Users YouTube channel.

Click image to register for webinarClick image to register for webinar

Classroom Training Available!

Select SAS Training centers are offering in-person courses. View upcoming courses for:

View all other training opportunities.

Discussion stats
  • 3 replies
  • 1146 views
  • 3 likes
  • 3 in conversation