I defined my own function named "loglik" to compute loglikelihood of State Space Model, and then call optimization subroutine "nlpdd()" to maximize my target function "loglik". The IML codes are following
proc iml;
m_p=0.002;sp=0.02;/*pars in the measurement eq.1*/
m_v1=0.05;m_v2=0.028;sv=0.04;/*pars in the measurement eq.2*/
beta=0.95;sq=0.03;a=0.85;/*pars in Transition*/
n=150;/*length of time series */
/*simulating state model*/
l=j(n+50,1,0);r=l;
do i=2 to nrow(l);
l[i]=0.85*l[i-1]+rannor(3432);
r[i]=0.95*r[i-1]+0.03*rannor(45345);
end;
l=l[51:n+50];r=r[51:n+50];I=exp(r);
/*generate observation Y=(Dp,V)*/
Dp=0.002*I+0.02*sqrt(I)#randfun(n,"norm");
v=0.05*I+0.028*L+0.04*sqrt(I)#randfun(n,"norm");
/*estimate the model using EKF */
/*build the loglik function for linearized DP SSM */
start loglik(mp,sp,beta,sq) global(dp,n);/*'m' stand for 'mean' and 's' for 'sigma'*/
alp_f=j(n,1,0);sig_f=j(n,1,0);
v=j(n,1,0);F=j(n,1,0);
alp_f[1]=0;sig_f[1]=sq/(1-beta);
v[1]=dp[1]-mp*exp(alp_f[1]);
do i=2 to n;
F[i-1]=exp(2*alp_f[i-1])*sig_f[i-1]+sp##2*exp(alp_f[i-1]);
K=beta*sig_f[i-1]*exp(alp_f[i-1])/F[i-1];
L=beta-K*exp(alp_f[i-1]);
sig_f[i]=beta*sig_f[i-1]*L+sq**2;
alp_f[i]=beta*alp_f[i-1]+K*v[i-1];
v[i]=dp[i]-mp*exp(alp_f[i]);
end;
F[n]=exp(2*alp_f[n])*sig_f[n]+sp##2*exp(alp_f[n]);
loglik=-0.5*sum(log(F)+v##2/F);
return(loglik);
finish;
x0={0.1 0.1 0.1 0.1};
call nlpdd(xr,xc,"loglik",x0);
Run the code, error message pops up in Log window as following.
ERROR: Too many arguments for function LOGLIK.
ERROR: NLPDD call: Error in argument module FUN.
ERROR: (execution) Unknown or error operation executed.
operation : NLPDD at line 1009 column 1
operands : *LIT1067, x0
*LIT1067 1 row 1 col (character, size 6)
loglik
x0 1 row 4 cols (numeric)
0.1 0.1 0.1 0.1
statement : CALL at line 1009 column 1
Pleas tell me how to correct the error.
The objective function in an optimization must take ONE parameter, although the parameter can be a vector. I see that you defined x0 to be a four-element vector, so I assume you want pass in a four-element vector, like this:
start loglik(parms) global(dp,n);
mp=parms[1]; sp=parms[2]; beta=parms[3]; sq=parms[4];
...
finish;
I have two additional suggestions:
1. If any of these parameters represent variance or standard deviation, be sure to define bounds so that the parameters are positive. For example, if the 2nd and 4th parameters must be positive, you could define
blc = {. 0 . 0, /* lower bounds */
. . . .}; /* upper bounds */
call nlpdd(xr,xc,"loglik",x0) blc=blc;
2. Before you try to optimize, you should look at the "Ten tips before you run an optimization."
Better pose it at IML forum and calling @Rick_SAS
The objective function in an optimization must take ONE parameter, although the parameter can be a vector. I see that you defined x0 to be a four-element vector, so I assume you want pass in a four-element vector, like this:
start loglik(parms) global(dp,n);
mp=parms[1]; sp=parms[2]; beta=parms[3]; sq=parms[4];
...
finish;
I have two additional suggestions:
1. If any of these parameters represent variance or standard deviation, be sure to define bounds so that the parameters are positive. For example, if the 2nd and 4th parameters must be positive, you could define
blc = {. 0 . 0, /* lower bounds */
. . . .}; /* upper bounds */
call nlpdd(xr,xc,"loglik",x0) blc=blc;
2. Before you try to optimize, you should look at the "Ten tips before you run an optimization."
Are you ready for the spotlight? We're accepting content ideas for SAS Innovate 2025 to be held May 6-9 in Orlando, FL. The call is open until September 16. Read more here about why you should contribute and what is in it for you!
Learn how to run multiple linear regression models with and without interactions, presented by SAS user Alex Chaplin.
Find more tutorials on the SAS Users YouTube channel.