BookmarkSubscribeRSS Feed
Tzar
Fluorite | Level 6
PROC IML/ CASE SCHILLER/REPEAT SALES INDEX

Hi Everyone. I am quite stuck. I inherited a house price index model which is founded on the case schiller methodology and uses a proc iml/matrix function to calculate the betas of the model.

 

Problem is, we have tried to work through the code but cannot make sense of why the matrix approach was applied.

 

If any, is there something I can use to replace this function with? (I'm taking a shot in the dark here). Also, a lambda of five is used in the HP filter

 

Code:

 

proc iml;

/****************************************
Reading the data into a iml matrix
*****************************************/
Use price3;
/*price = j(2000000,482,0);*/ /*(number of transactions, number of date points,fill with zeros) = creating the size of the matrix price3 */
read all into price;

 

/************************************************************
Creating the X and Y matrix

Y is a matrix containing all the data for the
first month of the entire time period (bases time step)
and its size one by (number of transactions)

X is a matrix containing the data point from the second
time period to the last time period of all the transactions,
and its size is (time steps -1) by (amount of transactions)
*************************************************************/

X = price[,2:ncol(price)];
Y = Price[,1];

/*************************************************************
In order to compute beta according to the Case Shiller
method You have to change the first price in each row
of the X matrix to a negative value and keep the second
price the same, except if the transactions first price
falls within the bases time period thus in the Y matrix
then the first and only price in the X matrix row stays
positive.
**************************************************************/

do i = 1 to nrow(x);
one = 0;
if y[i,1] > 0 then
do j = 1 to ncol(x);
x[i,j] = x[i,j];
end;
else
do j = 1 to ncol(x);
if one = 0
then x[i,j] = x[i,j]*-1 ;
else x[i,j] = x[i,j];
one = x[i,j]+one;
end;
end;

/*************************************************************
Z is basically the X matrix except that the price is
changed to one thus where there is a negative price in
X there is -1 in Z and where there is a positive price
in X there is a 1 in Z else the rest stays zero.
**************************************************************/

Z = j(nrow(x),ncol(x),1);
do i = 1 to nrow(x);
do j = 1 to ncol(x);
if x[i,j] = 0 then z[i,j] = 0;
if x[i,j] > 0 then z[i,j] = 1;
if x[i,j] < 0 then z[i,j] = -1;
end;
end;

/**************************************************************
Now we compute Beta with the Case Shiller method using
the matrix Y, X and Z
***************************************************************/

B_inv_est = inv(Z`*X)*(Z`*Y);
B_est = 1/B_inv_est;

/**************************************************************
The following steps computes the weighted Beta were
transaction further apart is weighted less than transaction
close to each other, but this calculation uses a lot of space
and thus cannot be computed on my sas server.
***************************************************************/

/*q = Y-(X*B_inv_est);
w = j(nrow(q),nrow(q),0);
do i = 1 to nrow(q);
do j = 1 to nrow(q);
if i = j then w[i,j] = w[i,j]+q[i];
else w[i,j]= 0 ;
end;
end;
B_inv_weight = inv((X`)*(W**2)*X)*((X`)*(W**2)*Y);
B_weight = 1/B_inv_weight;*/

print B_inv_est B_est /*B_inv_weight B_weight*/;


create B_est ; /** create data set **/
append; /** write data in vectors **/
close B_est; /** close the data set **/

quit;

data B_est;
set work.B_EST;
where B_EST > 0.0000001;
N = _N_;
run;

proc expand data=B_est out=B_est_HP_T5 method=none;
id N;
/* by B_est;*/
convert B_est = HP_B_est/ transformout=(HP_T 5);
run;

1 REPLY 1

SAS Innovate 2025: Register Now

Registration is now open for SAS Innovate 2025 , our biggest and most exciting global event of the year! Join us in Orlando, FL, May 6-9.
Sign up by Dec. 31 to get the 2024 rate of just $495.
Register now!

Multiple Linear Regression in SAS

Learn how to run multiple linear regression models with and without interactions, presented by SAS user Alex Chaplin.

Find more tutorials on the SAS Users YouTube channel.

From The DO Loop
Want more? Visit our blog for more articles like these.
Discussion stats
  • 1 reply
  • 396 views
  • 0 likes
  • 2 in conversation