I have written an IML module to compute a table created by the application of a dyadic function ( '+', '#', '/', etc.) applied to two numeric vectors.
start o_p( dyadic_fcn, x, y ) ;
/* purpose: compute outer product of vectors x, y by applying dyadic function
*
* parameters:
* dyadic_fcn ::= quoted dyadic function, e.g., + - = ^= # ## < > , &cetera
* x ::= numeric scalar or vector
* y ::= numeric scalar or vector
*
* returns outer product of column vector x <dyadic function> row vector y
*
* example:
* a = 1 : 4 ; b = 1 : 5 ;
*
* c = op( '/', a, b ) ;
*/
tmp_x = colvec( x ) ; n_row_x = nrow( tmp_x ) ;
tmp_y = rowvec( y ) ; n_col_y = ncol( tmp_y ) ;
x_mat = repeat( tmp_x, 1, n_col_y ) ;
y_mat = repeat( tmp_y, n_row_x, 1 ) ;
call execute( 'rslt = x_mat', dyadic_fcn, 'y_mat ;' ) ;
return rslt ;
finish o_p ;
For example,
x = 1 : 5 ;
y = 1 : 3 ;
z1 = o_p( '<', x, y ) ;
z2 = o_p( '+', x, y ) ;
z3 = o_p( '^=', x, y ) ;
z4 = o_p( '#', x, y ) ;
print x y, z1[ l="dyadic function =' '<'"] " " z2[l="dyadic function = '+'"] " " z3[l="dyadic function = '^='"] " " z4[l="dyadic function = '#'"] ;
z = o_p( '#', 1, { 2 3 4 5 } ) ;
print z ;
produces the results
x y
1 2 3 4 5 1 2 3
dyadic function =' '<' dyadic function = '+' dyadic function = '^=' dyadic function = '#'
0 1 1 2 3 4 0 1 1 1 2 3
0 0 1 3 4 5 1 0 1 2 4 6
0 0 0 4 5 6 1 1 0 3 6 9
0 0 0 5 6 7 1 1 1 4 8 12
0 0 0 6 7 8 1 1 1 5 10 15
z
2 3 4 5
I have solved the problem using conformable matrices, but it would be nice if there were an IML function to perform the same task more efficiently. I also know that I can use the APPLY function, but I have to define the particular dyadic function for two arguments, and this is an inelegant and inefficient use of APPLY, IMHO. The statement
z = colvec( x ) * rowvec( y ) ;
produces the same result as z = o_p( '#', x, y ) but this is the only case of a built-in IML outer product function that I know of. Is there any equivalent in IML for general dyadic functions?
Interesting. I haven't seen the term 'dyadic function' use like this before. Looks like your 'dyadic functions' are the pairwise scalar operators
D[i,j] = x[i] op y[j]
Although I almost always recommend IML functions over SAS macros, but this might be a case where a macro is simpler:
proc iml;
/* use macro instead of a function call */
%macro o_p(x, op, y);
(colvec(&x) &op repeat(rowvec(&y),nrow(&x)*ncol(&x)))
%mend;
x = 1 : 5 ;
y = 1 : 3 ;
w1 = %o_p(x, <, y );
w2 = %o_p(x, +, y );
w3 = %o_p(x, ^=, y );
w4 = %o_p(x, #, y );
print w1[r=x c=y l="dyadic function = '<'"],
w2[r=x c=y l="dyadic function = '+'"],
w3[r=x c=y l="dyadic function = '^='"],
w4[r=x c=y l="dyadic function = '#'"];
Interesting. I haven't seen the term 'dyadic function' use like this before. Looks like your 'dyadic functions' are the pairwise scalar operators
D[i,j] = x[i] op y[j]
Although I almost always recommend IML functions over SAS macros, but this might be a case where a macro is simpler:
proc iml;
/* use macro instead of a function call */
%macro o_p(x, op, y);
(colvec(&x) &op repeat(rowvec(&y),nrow(&x)*ncol(&x)))
%mend;
x = 1 : 5 ;
y = 1 : 3 ;
w1 = %o_p(x, <, y );
w2 = %o_p(x, +, y );
w3 = %o_p(x, ^=, y );
w4 = %o_p(x, #, y );
print w1[r=x c=y l="dyadic function = '<'"],
w2[r=x c=y l="dyadic function = '+'"],
w3[r=x c=y l="dyadic function = '^='"],
w4[r=x c=y l="dyadic function = '#'"];
SAS Innovate 2025 is scheduled for May 6-9 in Orlando, FL. Sign up to be first to learn about the agenda and registration!
Learn how to run multiple linear regression models with and without interactions, presented by SAS user Alex Chaplin.
Find more tutorials on the SAS Users YouTube channel.