BookmarkSubscribeRSS Feed
SWEETSAS
Obsidian | Level 7

The following SAS codes work fine, but after computing the MD between each of the replicates in HAVE1 with the data set HAVE2, I want the variable INDEX to be part of the final data set.  That is, I think the last few lines of code should look like this:

 

create want from want[c={index reps distance}];
append from want;

 Any help will be appreciated. Thanks for your help. 

 

Jack

 

data HAVE1;

 

input index reps ID X Y;

datalines;

 

 

 

1

1

00-01

5

3

1

1

00-02

4

6

1

1

00-03

6

4

1

1

00-06

4

6

1

2

00-02

4

6

1

2

00-03

6

4

1

2

00-04

7

5

1

2

00-05

9

2

1

3

00-01

5

3

1

3

00-02

4

6

1

3

00-05

9

2

1

3

00-10

7

4

1

4

00-03

6

4

1

4

00-05

9

2

1

4

00-09

7

3

1

4

00-10

7

4

1

5

00-03

6

4

1

5

00-04

7

5

1

5

00-07

5

8

1

5

00-09

7

3

1

6

00-02

4

6

1

6

00-03

6

4

1

6

00-05

9

2

1

6

00-10

7

4

2

1

00-01

5

3

2

1

00-02

4

6

2

1

00-03

6

4

2

1

00-06

4

6

2

2

00-02

4

6

2

2

00-03

6

4

2

2

00-04

7

5

2

2

00-05

9

2

2

3

00-01

5

3

2

3

00-02

4

6

2

3

00-05

9

2

2

3

00-10

7

4

2

4

00-03

6

4

2

4

00-05

9

2

2

4

00-09

7

3

2

4

00-10

7

4

2

5

00-03

6

4

2

5

00-04

7

5

2

5

00-07

5

8

2

5

00-09

7

3

2

6

00-02

4

6

2

6

00-03

6

4

2

6

00-05

9

2

2

6

00-10

7

4

3

1

00-01

5

3

3

1

00-02

4

6

3

1

00-03

6

4

3

1

00-06

4

6

3

2

00-02

4

6

3

2

00-03

6

4

3

2

00-04

7

5

3

2

00-05

9

2

3

3

00-01

5

3

3

3

00-02

4

6

3

3

00-05

9

2

3

3

00-10

7

4

3

4

00-03

6

4

3

4

00-05

9

2

3

4

00-09

7

3

3

4

00-10

7

4

3

5

00-03

6

4

3

5

00-04

7

5

3

5

00-07

5

8

3

5

00-09

7

3

3

6

00-02

4

6

3

6

00-03

6

4

3

6

00-05

9

2

3

6

00-10

7

4

;

run;

 

data have 2;

input index resps ID X Y;

datalines;

10

6

00-02

4

6

10

6

00-03

6

4

10

6

00-05

9

2

10

6

00-10

7

4

;

run;

 

 

proc iml;
use have1 nobs nobs;
read all var {reps};
read all var {x y} into data;
close;
use have2;
read all var {x y} into B;
close;

  
start new_cov(x);
 Xc=x-x[:,];
 c=Xc`*Xc/nrow(x);
 return (c);
finish;   
   
start new_mahalanobis(A,B);
 xDiff=A[:,]-B[:,];  
 cA=new_cov(A);
 cB=new_cov(B);
 pC=(nrow(A)/(nrow(A)+nrow(B)))#cA +
    (nrow(B)/(nrow(A)+nrow(B)))#cB ;
 d=sqrt(xDiff*inv(pC)*xDiff`); 
 return (d);
finish;



start_end=t(loc(t(reps)^={.}||remove(reps,nobs)))||
          t(loc(t(reps)^=remove(reps,1)||{.}));
want=j(nrow(start_end),2,.);
 
want[,1]=reps[start_end[,1]]; 
do i=1 to nrow(start_end);
 idx=start_end[i,1]:start_end[i,2];
 A=data[idx,];
 want[i,2]=new_mahalanobis(A,B);
end;

create want from want[c={reps distance}];
append from want;
close;
quit;

  

4 REPLIES 4
IanWakeling
Barite | Level 11

Syntax like c = { reps distance index } is only setting the column names of the data set that is created by IML.   You will also need to declare the matrix 'want' to have a third column to accommodate the index data and write the elements of this third column from within the loop.

SWEETSAS
Obsidian | Level 7
Thanks Ianwakeling!

I need help with declaring matrix "WANT" to have a third column to accommodate the INDEX variable and writing the third column from within the loop.
IanWakeling
Barite | Level 11

For the declaration with 3 columns:

want=j(nrow(start_end),3,.);

then in the loop there needs to be a statement like:

 

want[i , 3] = ....

but I am not actually sure about the right hand side as I don't understand where the index data comes from.

 

SWEETSAS
Obsidian | Level 7
Thanks! The INDEX data is a column in the original data set. If you take a look at the data set example, INDEX is the first column. In the data set example, observations are within replicates, and replicates are within INDEX. I am thinking that since INDEXES are unique and the replicates are also unique, one could concatenate the INDDEX-REPS and then later separate the two variables.

sas-innovate-2026-white.png



April 27 – 30 | Gaylord Texan | Grapevine, Texas

Registration is open

Walk in ready to learn. Walk out ready to deliver. This is the data and AI conference you can't afford to miss.
Register now and lock in 2025 pricing—just $495!

Register now

From The DO Loop
Want more? Visit our blog for more articles like these.
Discussion stats
  • 4 replies
  • 1571 views
  • 0 likes
  • 2 in conversation