BookmarkSubscribeRSS Feed
Toni2
Lapis Lazuli | Level 10

Hi I have a time series, which i check it for stationarity using ADF test and arima proc 

 

proc arima data=&td19;
identify var=interest_rate stationarity=(adf=4);
run;
quit;

 

Below is the ADF test and trend & correlation analysis 

 

i started from the table from the bottom (trend model) and using the Tau compared it with 5% until to reject the null. i concluded that the series is stationary since 0.0315<0.05 zero mean model

 

However, when i see the ACF/PACF, based on my understanding, the series in not stationary. This is because the ACF decays slowly

 

My questions are : is this series stationary or not?

 

Augmented Dickey-Fuller Unit Root Tests
Type Lags Rho Pr < Rho Tau Pr < Tau F Pr > F
Zero Mean 0 -2.7655 0.2517 -2.46 0.014    
  1 -5.0099 0.1214 -2.26 0.0237    
  2 -3.982 0.168 -2.21 0.027    
  3 -5.0286 0.1207 -2.27 0.0228    
  4 -4.2696 0.1532 -2.14 0.0315    
Single Mean 0 -2.5618 0.7064 -1.71 0.4237 3.03 0.2995
  1 -6.4379 0.3047 -2.17 0.2186 2.78 0.3619
  2 -4.6272 0.4645 -1.92 0.3218 2.49 0.437
  3 -6.5225 0.2983 -2.17 0.2192 2.8 0.3657
  4 -5.2232 0.4056 -1.93 0.315 2.39 0.4685
Trend 0 -3.4578 0.9132 -1.23 0.8994 1.52 0.8742
  1 -16.6892 0.1154 -2.83 0.1917 4.32 0.3133
  2 -10.7554 0.3659 -2.18 0.4973 2.8 0.6186
  3 -19.6884 0.0597 -2.79 0.2033 4.29 0.3316
  4 -15.4981 0.1473 -2.39 0.3834 3.22 0.5402

 

Toni2_0-1626179342059.png

 

 

2 REPLIES 2
Ksharp
Super User
the series in not stationary.

Maybe You need create a new variable = interest_rate - lag4(interest_rate) .
and use this new variable to run ADF ,and check if it is stationary .
Toni2
Lapis Lazuli | Level 10

hi, thanks for your response. I have created the new variable :

 

newvar = interest_rate - lag4(interest_rate);

 

and run again the arima proc, below you can see the results 

 

The table shows that the Tau = 0.0045 < 0.05 which means that it is stationary. The ACF decays faster but PACT has 1st lag significant 

 

What is the conclusion? Does the below mean that the variable interest_rate is not stationary ? 

 

Augmented Dickey-Fuller Unit Root Tests
Type Lags Rho Pr < Rho Tau Pr < Tau F Pr > F
Zero Mean 0 -10.5703 0.022 -2.35 0.0188    
  1 -57.9428 <.0001 -5.44 <.0001    
  2 -47.1978 <.0001 -4.35 <.0001    
  3 -49.3153 <.0001 -4.28 <.0001    
  4 -24.2331 0.0003 -3.01 0.003    
Single Mean 0 -11.2029 0.092 -2.41 0.1419 2.9 0.3406
  1 -62.2964 0.0009 -5.57 <.0001 15.55 0.001
  2 -52.644 0.0009 -4.49 0.0005 10.07 0.001
  3 -55.7943 0.0009 -4.35 0.0007 9.55 0.001
  4 -27.2889 0.0011 -3.07 0.0327 4.74 0.049
Trend 0 -11.7463 0.3063 -2.48 0.3379 3.09 0.5647
  1 -64.2625 0.0003 -5.62 <.0001 15.8 0.001
  2 -55.4468 0.0003 -4.55 0.0022 10.33 0.001
  3 -57.8565 0.0003 -4.32 0.0045 9.46 0.001
  4 -28.5013 0.007 -3.07 0.1194 4.74 0.2431

 

  Toni2_0-1626185825981.png

 

 

SAS Innovate 2025: Save the Date

 SAS Innovate 2025 is scheduled for May 6-9 in Orlando, FL. Sign up to be first to learn about the agenda and registration!

Save the date!

Multiple Linear Regression in SAS

Learn how to run multiple linear regression models with and without interactions, presented by SAS user Alex Chaplin.

Find more tutorials on the SAS Users YouTube channel.

Discussion stats
  • 2 replies
  • 1046 views
  • 1 like
  • 2 in conversation