BookmarkSubscribeRSS Feed
critiasun
Calcite | Level 5

data arima.js_dispos;
set arima.js_2005to2018;
label year="y" cases="c";
run;

proc gplot data=arima.js_dispos;

plot cases*year;
symbol i=spline v=star ci=red cv=bib;
run;


proc arima data=arima.js_dispos;
identify var=cases stationarity=(adf=1);
run;

data arima.js_dispos_dif2;
set arima.js_dispos;
z=cases;
difz=dif(z);
difz2=dif(difz);
label z="n" difz="d1" difz2="d2" ;
run;


proc gplot data=arima.js_dispos_dif2;
plot (z difz difz2)*year;
symbol i=spline v=star ci=red cv=bib;
run;
proc arima data=arima.js_dispos_dif2;
identify var=difz2 stationarity=(adf=1);
run;

proc arima data=arima.js_dispos_dif2;
identify var=difz2 stationarity=(adf=1) WHITENOISE=IGNOREMISS;
run;

proc arima data=arima.js_dispos_dif2;
identify var=difz2 minic perror=(8:11);
run;

/*test proc arima data=arima.js_dispos_dif2;
identify var=difz2 minic P=(0:5) Q=(0:5) ;
run;

---------------test end*/


proc arima data=arima.js_dispos_dif2;
identify var=z(2) nlag=6;
estimate q=0 p=0 method=ml;
forecast lead=5 out=arima.outvalue id=year;
run;
quit;

SAS Innovate 2025: Save the Date

 SAS Innovate 2025 is scheduled for May 6-9 in Orlando, FL. Sign up to be first to learn about the agenda and registration!

Save the date!

Multiple Linear Regression in SAS

Learn how to run multiple linear regression models with and without interactions, presented by SAS user Alex Chaplin.

Find more tutorials on the SAS Users YouTube channel.

Discussion stats
  • 0 replies
  • 393 views
  • 0 likes
  • 1 in conversation