BookmarkSubscribeRSS Feed
🔒 This topic is solved and locked. Need further help from the community? Please sign in and ask a new question.
RobF
Quartz | Level 8

I'm experimenting with proc mcmc in SAS EG to build a zero truncated negative binomial (ZINB) regression for an insurance model that predicts annual health expenses = y based on the prior year's data.

I've referenced the following paper: http://support.sas.com/resources/papers/proceedings13/450-2013.pdf.

Unfortunately SAS EG doesn't support proc fcmp so I can't use the ZINB MCMC code as written in the article, but that shouldn't be a huge obstacle.

My code is below:

ods graphics on;

proc mcmc data=dataset seed=123 nmc=10000 nbi=1000 thin=3 outpost=post_zinb;

          parms  lbeta0 1.9 lbeta1 -2.6 lbeta2 -4.8 lbeta3 -3.7             

            pbeta0 6.5  pbeta1 0.8 pbeta2 1.9 pbeta3 1.1  alpha 1;

          prior pbeta: ~ normal(0,var=10);

          prior lbeta: ~ normal(0,var=10);

     prior alpha ~ gamma(2, iscale=2);

     link1 = lbeta0 + lbeta1*x1 + lbeta2*x2 + lbeta3*x3; * Logistic regression formula ;

     pi = ( 1/(1+exp(-link1))); * Logit transformation of link1 ;

     mu = exp(pbeta0 + pbeta1*x1 + pbeta2*x2 + pbeta3*x3); * Negative binomial regression formula in loglink function ;

     num_failures = y;

     prob_success = mu/(y + mu);

     num_successes = 1/alpha;

     llike=log(pi*(y eq 0) + (1-pi)*pdf("negbin", num_failures, prob_success, num_successes)); * ZINB log-likelihood function ;

          model general(llike);

     run;

ods graphics off;

Running the above code yields:

ERROR: Observation 1 yields an invalid log-likelihood value.

NOTE: The SAS System stopped processing this step because of errors.

There are several different ways to parameterize the negative binomial prob. density function - have I incorrectly specified the parameters for the SAS negative binomial pdf function?

Many thanks!

Robert

1 ACCEPTED SOLUTION

Accepted Solutions
RobF
Quartz | Level 8

Figured it out - my log-likelihood and model statements were incorrect. Corrected code is below.

I ended up rewriting programming statements for the log-likelihood, cribbing from the proc nlmixed zero-inflated negative binomial regression code on the UCLA SAS site (http://www.ats.ucla.edu/stat/sas/code/zip_zinb.htm).

ods graphics on;

proc mcmc data=work.ICM_RISK_NYC_FINAL_INTERACTIONS seed=123 nmc=20000 nbi=5000 thin=3 outpost=post_zinb;

     parms  lbeta0 1.9 lbeta1 -2.6 lbeta2 -4.8 lbeta3 -3.7 lbeta4 0.0            

           pbeta0 6.5  pbeta1 0.8 pbeta2 1.9 pbeta3 1.1 pbeta4 0.1 alpha 1;

         prior pbeta: ~ normal(0,var=5);

         prior lbeta: ~ normal(0,var=5);

         prior alpha ~ gamma(2, iscale=2);

     link1 = lbeta0 + lbeta1*x1 + lbeta2*x2 + lbeta3*x3 + lbeta4*x4; * Logistic regression formula ;

     pi = 1/(1+exp(-link1)); * Logit transformation of link1 ;

     mu = exp(pbeta0 + pbeta1*x1 + pbeta2*x2 + pbeta3*x3 + pbeta4*x4); * Neg bin regression formula w/ log link ;    

     disp_factor = 1/alpha;

     inv_alpha_mu = 1/(1+alpha*mu);

          if y_ceiling = 0 then llike = log(pi + (1-pi)*(inv_alpha_mu**disp_factor));

          else if y_ceiling > 0 then llike = log(1-pi) + lgamma(disp_factor + y_ceiling) - lgamma(y_ceiling+1)     

          - lgamma(disp_factor) + disp_factor*log(inv_alpha_mu) + y_ceiling*log(1-inv_alpha_mu);

          * ZINB log-likelihood function ;

          model y_ceiling ~ general(llike);

run;

ods graphics off;

View solution in original post

1 REPLY 1
RobF
Quartz | Level 8

Figured it out - my log-likelihood and model statements were incorrect. Corrected code is below.

I ended up rewriting programming statements for the log-likelihood, cribbing from the proc nlmixed zero-inflated negative binomial regression code on the UCLA SAS site (http://www.ats.ucla.edu/stat/sas/code/zip_zinb.htm).

ods graphics on;

proc mcmc data=work.ICM_RISK_NYC_FINAL_INTERACTIONS seed=123 nmc=20000 nbi=5000 thin=3 outpost=post_zinb;

     parms  lbeta0 1.9 lbeta1 -2.6 lbeta2 -4.8 lbeta3 -3.7 lbeta4 0.0            

           pbeta0 6.5  pbeta1 0.8 pbeta2 1.9 pbeta3 1.1 pbeta4 0.1 alpha 1;

         prior pbeta: ~ normal(0,var=5);

         prior lbeta: ~ normal(0,var=5);

         prior alpha ~ gamma(2, iscale=2);

     link1 = lbeta0 + lbeta1*x1 + lbeta2*x2 + lbeta3*x3 + lbeta4*x4; * Logistic regression formula ;

     pi = 1/(1+exp(-link1)); * Logit transformation of link1 ;

     mu = exp(pbeta0 + pbeta1*x1 + pbeta2*x2 + pbeta3*x3 + pbeta4*x4); * Neg bin regression formula w/ log link ;    

     disp_factor = 1/alpha;

     inv_alpha_mu = 1/(1+alpha*mu);

          if y_ceiling = 0 then llike = log(pi + (1-pi)*(inv_alpha_mu**disp_factor));

          else if y_ceiling > 0 then llike = log(1-pi) + lgamma(disp_factor + y_ceiling) - lgamma(y_ceiling+1)     

          - lgamma(disp_factor) + disp_factor*log(inv_alpha_mu) + y_ceiling*log(1-inv_alpha_mu);

          * ZINB log-likelihood function ;

          model y_ceiling ~ general(llike);

run;

ods graphics off;

hackathon24-white-horiz.png

2025 SAS Hackathon: There is still time!

Good news: We've extended SAS Hackathon registration until Sept. 12, so you still have time to be part of our biggest event yet – our five-year anniversary!

Register Now

Creating Custom Steps in SAS Studio

Check out this tutorial series to learn how to build your own steps in SAS Studio.

Find more tutorials on the SAS Users YouTube channel.

SAS Training: Just a Click Away

 Ready to level-up your skills? Choose your own adventure.

Browse our catalog!

Discussion stats
  • 1 reply
  • 1645 views
  • 0 likes
  • 1 in conversation