BookmarkSubscribeRSS Feed
🔒 This topic is solved and locked. Need further help from the community? Please sign in and ask a new question.
SSTEAD
Obsidian | Level 7

I have a fairly simple staffing problem. Optimize the minimum number of unfilled hourly slots and number of FTEs per shift with all possible 8 hours shifts in a 24 hour period. All FTEShifts are integer.
The log message from SAS is as follows: The NLP Solver does not allow integer problems". Results says "bad problem type".
Removing the integer restriction allows execution, but it is the not the desired solution, as I need integer solutions with the best fit.
How should I proceed? Thank you for your review.
The code sample is below:

 

data goal;
input day $ Hr00 Hr01 Hr02 Hr03 Hr04 Hr05 Hr06 Hr07 Hr08 Hr09 Hr10 Hr11 Hr12 Hr13 Hr14 Hr15 Hr16 Hr17 Hr18 Hr19 Hr20 Hr21 Hr22 Hr23;
datalines;
Hol 0.5 0.5 0.5 0.44 0.47 0.61 0.5 1.72 2.28 2.6 2.49 2.52 2.03 1.65 1.42 0.93 1.03 0.75 0.73 0.43 0.54 0.36 0.39 0.25
;

data weight;
input Hr00 Hr01 Hr02 Hr03 Hr04 Hr05 Hr06 Hr07 Hr08 Hr09 Hr10 Hr11 Hr12 Hr13 Hr14 Hr15 Hr16 Hr17 Hr18 Hr19 Hr20 Hr21 Hr22 Hr23;
datalines;
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
;

data Staffing_Shifts;
input Start_Time :TIME5. End_Time :TIME5. Shift_Number Shift_Label :$11. Shift_Duration Hr00 Hr01 Hr02 Hr03 Hr04 Hr05 Hr06 Hr07 Hr08 Hr09 Hr10 Hr11 Hr12 Hr13 Hr14 Hr15 Hr16 Hr17 Hr18 Hr19 Hr20 Hr21 Hr22 Hr23;
format Start_Time End_Time TIME5.;
datalines;
00:00 08:00 01 00:00-08:00 8 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
01:00 09:00 02 01:00-09:00 8 0 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
02:00 10:00 03 02:00-10:00 8 0 0 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0
03:00 11:00 04 03:00-11:00 8 0 0 0 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0
04:00 12:00 05 04:00-12:00 8 0 0 0 0 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0
05:00 13:00 06 05:00-13:00 8 0 0 0 0 0 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0
06:00 14:00 07 06:00-14:00 8 0 0 0 0 0 0 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0
07:00 15:00 08 07:00-15:00 8 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0
08:00 16:00 09 08:00-16:00 8 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0
09:00 17:00 10 09:00-17:00 8 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0
10:00 18:00 11 10:00-18:00 8 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 0 0 0 0 0 0
11:00 19:00 12 11:00-19:00 8 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 0 0 0 0 0
12:00 20:00 13 12:00-20:00 8 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 0 0 0 0
13:00 21:00 14 13:00-21:00 8 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 0 0 0
14:00 22:00 15 14:00-22:00 8 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 0 0
15:00 23:00 16 15:00-23:00 8 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 0
16:00 00:00 17 16:00-00:00 8 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1
17:00 01:00 18 17:00-01:00 8 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1
18:00 02:00 19 18:00-02:00 8 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1
19:00 03:00 20 19:00-03:00 8 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1
20:00 04:00 21 20:00-04:00 8 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1
21:00 05:00 22 21:00-05:00 8 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1
22:00 06:00 23 22:00-06:00 8 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1
23:00 07:00 24 23:00-07:00 8 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1
;

%let name=Ver0.1;
TITLE "&name - Version 1" ;

%let NPERIODS=24;
%let NSHIFTS=24;
%let MAXSHIFTS=10;


proc optmodel PRINTLEVEL=2;
var FTEPerShift{1..24} >= 0 <= &MAXSHIFTS integer;

/* Shifts - each has different start and stop time periods, and total times
Rooms - number of rooms needed at each time period
Weights - relative importance of each time period
*/

set PERIODS = 0..23;
set SHIFTS = 1..24;

/* http://support.sas.com/documentation/cdl/en/ormpug/59679/HTML/default/viewer.htm#optmodel_sect44.htm */
str GoalWeekDay;
num InputPeriods{PERIODS};
read data goal into
GoalWeekDay=day
{ p in PERIODS} < InputPeriods[p]=col("Hr"||put(p,z2.) ) >;
print GoalWeekDay InputPeriods ;

/* Round up for GOAL per Period */
num Goal{PERIODS};
for {p in PERIODS}
Goal[p] = round(InputPeriods[p]+0.5,1);
print Goal;

/* Get Weighting per Period */
num Weighting{PERIODS};
read data weight into
{ p in PERIODS} < Weighting[p]=col("Hr"||put(p,z2.) ) >;
print Weighting;

str ShiftLabel{SHIFTS} ;
num StartTime{SHIFTS}, EndTime{SHIFTS}, ShiftDuration{SHIFTS} ;
set <num> ShiftNumber ;

num FTEperShiftPeriod{SHIFTS,PERIODS};

read data Staffing_Shifts into
ShiftNumber =[_N_]
ShiftLabel =shift_label
StartTime[_N_]=start_time
EndTime[_N_]=end_time
ShiftDuration[_N_]=Shift_Duration
{ p in PERIODS} < FTEperShiftPeriod[_N_,p]=col("Hr"||put(p,z2.) ) >;

print ShiftLabel StartTime EndTime ShiftDuration FTEperShiftPeriod ;

num FTEShiftPeriod{SHIFTS,PERIODS};
num FTEPeriod{PERIODS};

/* W O R K I N G S E C T I O N */
/* Calculate the number per Shift */

for {s in SHIFTS,p in PERIODS} FTEShiftPeriod[s,p] = FTEPerShift[s].sol * FTEperShiftPeriod[s,p];

/* */
for {p in PERIODS} FTEPeriod[p] = sum {s in SHIFTS} FTEShiftPeriod[s,p];

/* G O A L */
min TtlDifference = sum {p in PERIODS} ABS( Goal[p]-FTEPeriod[p] ) * Weighting[p];

expand;

solve;

 

print TtlShifts TtlDifference FTEPerShift;

quit;

 

/* *************************
* End of 01-SimnpleStaff24
* ************************* */

1 ACCEPTED SOLUTION

Accepted Solutions
SSTEAD
Obsidian | Level 7

It now delivers an optimal solution, with the value of 4.

Thank you very much.

 

Why are the additional variables needed: Slack and Surplus? They seem extraneous.

I am clearly missing something here. Is is that the minimization formula has to have variables in it?

 

Thank you again.

 

 

View solution in original post

5 REPLIES 5
RobPratt
SAS Super FREQ

You can linearize the absolute error objective as follows:

impvar FTEShiftPeriod {s in SHIFTS,p in PERIODS} = FTEPerShift[s] * FTEperShiftPeriod[s,p];
impvar FTEPeriod {p in PERIODS} = sum {s in SHIFTS} FTEShiftPeriod[s,p];
var Surplus {PERIODS} >= 0;
var Slack {PERIODS} >= 0;
con AbsErrorCon {p in PERIODS}:
   FTEPeriod[p] - Goal[p] = Surplus[p] - Slack[p];
min TtlDifference = sum {p in PERIODS} (Surplus[p] + Slack[p]) * Weighting[p];

 

Also see the attached example for two compact ways to handle the "wraparound" issue when a shift starts on one day but goes past midnight and ends the next day.

SSTEAD
Obsidian | Level 7

Thank you for the quick reply. Adding the two vars does now allow the program to run, but it does not iterate or solve. I am not sure how adding these vars works.

Did I miss something?

 

Thanks for the code example. I will review.

 

RobPratt
SAS Super FREQ

Sorry, my first IMPVAR statement was missing an equals sign, which I have now added.  Please try again.  The MILP solver should return an optimal solution with objective value 4.

SSTEAD
Obsidian | Level 7

It now delivers an optimal solution, with the value of 4.

Thank you very much.

 

Why are the additional variables needed: Slack and Surplus? They seem extraneous.

I am clearly missing something here. Is is that the minimization formula has to have variables in it?

 

Thank you again.

 

 

RobPratt
SAS Super FREQ

This is a standard linearization technique for absolute value (or L1 norm).  At an optimal solution, at least one of Surplus[p] and Slack[p] will be zero, and their sum Surplus[p] + Slack[p] will be the absolute value of FTEPeriod[p] - Goal[p].  See examples 11 and 13 here.

SAS Innovate 2025: Call for Content

Are you ready for the spotlight? We're accepting content ideas for SAS Innovate 2025 to be held May 6-9 in Orlando, FL. The call is open until September 25. Read more here about why you should contribute and what is in it for you!

Submit your idea!

Multiple Linear Regression in SAS

Learn how to run multiple linear regression models with and without interactions, presented by SAS user Alex Chaplin.

Find more tutorials on the SAS Users YouTube channel.

Discussion stats
  • 5 replies
  • 1410 views
  • 0 likes
  • 2 in conversation