BookmarkSubscribeRSS Feed
🔒 This topic is solved and locked. Need further help from the community? Please sign in and ask a new question.
vicky07
Quartz | Level 8

Hello,

I’ve a challenge where I need to do even distribution of multiple parameters with in two groups. In my below data I have 23 unique patient ID groups. Each patient ID group has multiple records with varying balance, risk and prod type’s combinations.

 

I want to split the total unique patient id in to two groups. Group A is 80% and group B is 20%. So in this case Group A should be 18 unique patient ID and group B should be 5 patient group. This split percent could change every month. Next run  could be 70/30 split.

 

What I am trying to achieve is similar mean balance, similar mean risk and uniform prod split between test and control groups. I was told that SAS/OR might solve this problem. I’ve SAS 9.4  Level 1M3 version.

 

Desired output:

 

Test

 

Control

Mean Bal

Mean Risk

AH

KO

ZU

 

Mean Bal

Mean Risk

AH

KO

ZU

2700

0.676

38%

22%

40%

 

2650

0.68

38%

22%

40%

 

 

Any help is much appreciated. Thank you in advance for your time and attention!!

 

 

PS: I have close to 480 unique patient ID groups but I am sharing only few for sample purposes. So please let me know if you need more data.  

 

My Data:

 

 

Patient Group

Balance

Risk

prod

3116290

4842.86

0.2222

ZU

3116290

1423.83

0.0200

AH

3116290

10040.3

0.0857

AH

3116290

3081.93

0.1514

ZU

3116290

4393.63

0.2171

AH

3116290

12199.3

0.2829

ZU

3116290

600.71

0.3486

KO

3116290

5082.37

0.4143

AH

3116290

13443.3

0.4800

KO

3116290

8202.96

0.5457

ZU

3116290

4601

0.6114

KO

3480975

5169.2

0.8889

ZU

3480975

6011.33

0.0429

AH

3480975

1832.1

0.1086

KO

3480975

2859.38

0.1743

KO

3480975

8462.93

0.2400

ZU

3480975

8318.86

0.3057

AH

3480975

7715.96

0.3714

ZU

3480975

2522.06

0.4371

AH

3480975

1637.89

0.5029

ZU

3480975

1942.42

0.5686

KO

3480975

2478.48

0.6343

ZU

3954070

14022.8

0.6667

AH

3954070

4831.72

0.6667

ZU

3954070

1000.32

0.0543

AH

3954070

2466.47

0.1200

AH

3954070

7685.72

0.1857

ZU

3954070

2011.07

0.2514

KO

3954070

9222.99

0.3171

ZU

3954070

5234.82

0.3829

ZU

3954070

7727.08

0.4486

AH

3954070

9481.1

0.5143

KO

3954070

6005.09

0.5800

AH

3954070

1738.4

0.6457

KO

4183977

5520.07

0.2222

AH

4183977

4995.73

0.7778

KO

4183977

10158

0.0629

ZU

4183977

7960.01

0.1286

KO

4183977

4713.21

0.1943

ZU

4183977

10567.3

0.2600

KO

4183977

9962.74

0.3257

ZU

4183977

2846.64

0.3914

KO

4183977

4343.59

0.4571

AH

4183977

5405.71

0.5229

ZU

4183977

10297.6

0.5886

AH

5692230

6074.19

0.6667

KO

5692230

5847.36

0.0114

ZU

5692230

3724.57

0.0771

AH

5692230

5670

0.1429

ZU

5692230

6360.26

0.2086

KO

5692230

3020.87

0.2743

AH

5692230

773.24

0.3400

AH

5692230

3565.45

0.4057

ZU

5692230

1610.1

0.4714

KO

5692230

7046.04

0.5371

ZU

5692230

2315.76

0.6029

KO

5852387

2407.18

0.7778

ZU

5852387

16275

0.0343

AH

5852387

5783.73

0.1000

KO

5852387

7513.21

0.1657

AH

5852387

1604.84

0.2314

KO

5852387

5114.36

0.2971

AH

5852387

4473.8

0.3629

ZU

5852387

7395.58

0.4286

AH

5852387

13924

0.4943

ZU

5852387

8483.98

0.5600

KO

5852387

14856

0.6257

AH

5981283

3942.05

0.1111

AH

5981283

8109.96

0.0314

KO

5981283

2604.99

0.0971

ZU

5981283

1627.6

0.1629

KO

5981283

10124.5

0.2286

ZU

5981283

4503.83

0.2943

KO

5981283

2077.9

0.3600

AH

5981283

4858.14

0.4257

KO

5981283

15987.3

0.4914

KO

5981283

5338.41

0.5571

ZU

5981283

5411.3

0.6229

AH

6681096

2671.5

0.4444

ZU

6681096

2014.46

0.8889

AH

6681096

10174.2

0.0657

KO

6681096

7755.11

0.1314

AH

6681096

9176.04

0.1971

KO

6681096

6199.91

0.2629

AH

6681096

5959.14

0.3286

KO

6681096

4568.93

0.3943

AH

6681096

4901.56

0.4600

ZU

6681096

7179.79

0.5257

KO

6681096

4385.1

0.5914

AH

6712099

4458.79

0.8889

KO

6712099

1081.77

0.0286

ZU

6712099

1882.14

0.0943

KO

6712099

4956.5

0.1600

ZU

6712099

1923.54

0.2257

AH

6712099

5555.1

0.2914

ZU

6712099

5857.5

0.3571

KO

6712099

951.77

0.4229

ZU

6712099

4765.94

0.4886

ZU

6712099

3899.5

0.5543

AH

6712099

1566.08

0.6200

KO

6915827

10802.4

0.1111

AH

6915827

6550.25

0.3333

KO

6915827

6538.26

0.0457

ZU

6915827

9412.25

0.1114

AH

6915827

11126.8

0.1771

ZU

6915827

3565.03

0.2429

KO

6915827

5312.21

0.3086

AH

6915827

2552.77

0.3743

KO

6915827

9565.37

0.4400

ZU

6915827

3142.98

0.5057

KO

6915827

2162.13

0.5714

AH

6915827

5518.75

0.6371

KO

7081267

1990.64

0.1111

KO

7081267

2306.08

0.0229

ZU

7081267

1774.27

0.0886

AH

7081267

5419.36

0.1543

KO

7081267

5446.57

0.2200

ZU

7081267

5760.97

0.2857

KO

7081267

8158.38

0.3514

AH

7081267

3845.6

0.4171

ZU

7081267

7852.74

0.4829

AH

7081267

9937.26

0.5486

KO

7081267

9644.65

0.6143

AH

7712089

8489.78

0.4444

AH

7712089

11872.2

0.0143

KO

7712089

6018.03

0.0800

ZU

7712089

2368.36

0.1457

KO

7712089

7418.02

0.2114

ZU

7712089

1725.35

0.2771

ZU

7712089

5759.08

0.3429

AH

7712089

5251.2

0.4086

KO

7712089

5822.4

0.4743

AH

7712089

5829.46

0.5400

KO

7712089

3064.08

0.6057

AH

7823183

1314.14

0.1111

KO

7823183

10605.1

0.5556

ZU

7823183

734.27

0.0600

KO

7823183

3428.32

0.1257

ZU

7823183

8687.86

0.1914

AH

7823183

6893.45

0.2571

ZU

7823183

5771.71

0.3229

AH

7823183

7104.48

0.3886

ZU

7823183

1906.69

0.4543

KO

7823183

7374.7

0.5200

AH

7823183

2243.76

0.5857

KO

7854689

5999.57

0.0235

ZU

7854689

6328.44

0.0086

AH

7854689

2025.56

0.0743

KO

7854689

9011.13

0.1400

AH

7854689

2396.85

0.2057

ZU

7854689

1499.99

0.2714

AH

7854689

3843.56

0.3371

KO

7854689

1807.62

0.4029

AH

7854689

1381.71

0.4686

ZU

7854689

2279.52

0.5343

AH

7854689

3627.87

0.6000

ZU

7893195

4203.73

0.3333

ZU

7893195

6851.77

0.0257

KO

7893195

4976.24

0.0914

ZU

7893195

16976.4

0.1571

AH

7893195

6642.81

0.2229

KO

7893195

5181.4

0.2886

AH

7893195

8186.85

0.3543

ZU

7893195

543.88

0.4200

KO

7893195

2767.34

0.4857

AH

7893195

3503.75

0.5514

AH

7893195

5646.97

0.6171

ZU

7985432

1625.6

0.3333

AH

7985432

6007.09

0.0171

AH

7985432

9309.43

0.0829

KO

7985432

2554.18

0.1486

AH

7985432

14081

0.2143

KO

7985432

1938.99

0.2800

KO

7985432

2127.68

0.3457

ZU

7985432

6490.22

0.4114

AH

7985432

13093.2

0.4771

ZU

7985432

2370

0.5429

AH

7985432

3034.79

0.6086

ZU

8609457

2629.98

0.8889

AH

8609457

3266.02

0.0057

KO

8609457

6573.52

0.0714

ZU

8609457

5726.06

0.1371

KO

8609457

13919.8

0.2029

AH

8609457

5175.39

0.2686

KO

8609457

1563.75

0.3343

ZU

8609457

3317.71

0.4000

KO

8609457

11042.2

0.4657

AH

8609457

6191.83

0.5314

KO

8609457

3106.54

0.5971

KO

8762365

10710.1

0.4444

ZU

8762365

10390.2

0.4444

AH

8762365

3769.6

0.0486

KO

8762365

3877.63

0.1143

ZU

8762365

12776.3

0.1800

KO

8762365

7184.28

0.2457

AH

8762365

570.75

0.3114

ZU

8762365

2574.02

0.3771

AH

8762365

3385.32

0.4429

KO

8762365

2440.11

0.5086

AH

8762365

2588.24

0.5743

ZU

8762365

1598.54

0.6400

AH

8764589

6235.53

0.8889

ZU

8764589

7318.75

0.2222

KO

8764589

3556.55

0.0571

ZU

8764589

8079.75

0.1229

AH

8764589

4582.75

0.1886

KO

8764589

2720.45

0.2543

AH

8764589

2249.32

0.3200

KO

8764589

4456.55

0.3857

KO

8764589

10328.1

0.4514

ZU

8764589

14134.1

0.5171

AH

8764589

9372.82

0.5829

ZU

8908712

2846.48

0.5556

KO

8908712

6355.41

0.7778

AH

8908712

8377.28

0.0514

AH

8908712

1724.81

0.1171

KO

8908712

3780.54

0.1829

AH

8908712

3842.75

0.2486

ZU

8908712

3941.74

0.3143

KO

8908712

10141.9

0.3800

AH

8908712

6379.06

0.4457

AH

8908712

9135.39

0.5114

ZU

8908712

10832

0.5771

KO

8908712

4100.04

0.6429

ZU

8923394

16299.4

0.1111

KO

8923394

1665.49

0.0371

ZU

8923394

11165.4

0.1029

AH

8923394

6492.05

0.1686

AH

8923394

1379.13

0.2343

AH

8923394

8787.07

0.3000

ZU

8923394

11570.8

0.3657

KO

8923394

2021.29

0.4314

ZU

8923394

5785.57

0.4971

KO

8923394

3702.73

0.5629

AH

8923394

1947.92

0.6286

ZU

9129938

2434.89

0.5556

KO

9129938

929.46

0.0029

ZU

9129938

11754.9

0.0686

AH

9129938

3575.18

0.1343

ZU

9129938

6434.74

0.2000

AH

9129938

7206.08

0.2657

ZU

9129938

4188.49

0.3314

AH

9129938

5805.92

0.3971

ZU

9129938

796.84

0.4629

KO

9129938

10338.7

0.5286

ZU

9129938

4977.87

0.5943

ZU

9871098

5769.37

0.9822

AH

9871098

1052.96

0.0400

KO

9871098

5279.43

0.1057

ZU

9871098

2122.15

0.1714

ZU

9871098

3295.09

0.2371

AH

9871098

8973.24

0.3029

KO

9871098

5101.27

0.3686

AH

9871098

7284.64

0.4343

KO

9871098

1726.34

0.5000

AH

9871098

8804.15

0.5657

ZU

9871098

10659.6

0.6314

KO



1 ACCEPTED SOLUTION

Accepted Solutions
RobPratt
SAS Super FREQ

Does the following PROC OPTMODEL code do what you want?

proc optmodel;
   /* declare parameters and read data */
   set GROUPS = /Test Control/;
   num groupSize {GROUPS} = [18, 5];

   set OBS;
   str PatientGroup {OBS};
   num Balance {OBS};
   num Risk {OBS};
   str prod {OBS};
   read data indata into OBS=[_N_] PatientGroup Balance Risk prod;

   set PATIENT_GROUPS = setof {i in OBS} PatientGroup[i];
   set PRODS = setof {i in OBS} prod[i];
   set OBS_p {PATIENT_GROUPS} init {};
   num patientCount {PATIENT_GROUPS} init 0;
   num sumBalance {PATIENT_GROUPS} init 0;
   num sumRisk {PATIENT_GROUPS} init 0;
   num sumProd {PATIENT_GROUPS, PRODS} init 0;
   str p_this, pr_this;
   for {i in OBS} do;
      p_this = PatientGroup[i];
      OBS_p[p_this] = OBS_p[p_this] union {i};
      patientCount[p_this] = patientCount[p_this] + 1;
      sumBalance[p_this] = sumBalance[p_this] + Balance[i];
      sumRisk[p_this] = sumRisk[p_this] + Risk[i];
      pr_this = prod[i];
      sumProd[p_this, pr_this] = sumProd[p_this, pr_this] + 1;
   end;
   num totalBalance = sum {p in PATIENT_GROUPS} sumBalance[p];
   num totalRisk = sum {p in PATIENT_GROUPS} sumRisk[p];
   num totalProd {pr in PRODS} = sum {p in PATIENT_GROUPS} sumProd[p,pr];

   /* Assign[p,g] = 1 if patient group p is assigned to group g, 0 otherwise */
   var Assign {PATIENT_GROUPS, GROUPS} binary;

   /* assign each patient group to exactly one group */
   con AssignOnce {p in PATIENT_GROUPS}:
      sum {g in GROUPS} Assign[p,g] = 1;

   /* assign groupSize[g] patient groups to group g */
   con GroupSizeCon {g in GROUPS}:
      sum {p in PATIENT_GROUPS} Assign[p,g] = groupSize[g];

   /* penalize absolute difference from fair share for Balance */
   var BalanceErrorPlus {GROUPS} >= 0;
   var BalanceErrorMinus {GROUPS} >= 0;
   con BalanceErrorCon {g in GROUPS}:
      (sum {p in PATIENT_GROUPS} sumBalance[p] * Assign[p,g]) / totalBalance - groupSize[g] / card(PATIENT_GROUPS) 
    = BalanceErrorPlus[g] - BalanceErrorMinus[g];
   impvar BalanceError = sum {g in GROUPS} (BalanceErrorPlus[g] + BalanceErrorMinus[g]);

   /* penalize absolute difference from fair share for Risk */
   var RiskErrorPlus {GROUPS} >= 0;
   var RiskErrorMinus {GROUPS} >= 0;
   con RiskErrorCon {g in GROUPS}:
      (sum {p in PATIENT_GROUPS} sumRisk[p] * Assign[p,g]) / totalRisk - groupSize[g] / card(PATIENT_GROUPS) 
    = RiskErrorPlus[g] - RiskErrorMinus[g];
   impvar RiskError = sum {g in GROUPS} (RiskErrorPlus[g] + RiskErrorMinus[g]);

   /* penalize absolute difference from fair share for Prod */
   var ProdErrorPlus {GROUPS, PRODS} >= 0;
   var ProdErrorMinus {GROUPS, PRODS} >= 0;
   con ProdErrorCon {g in GROUPS, pr in PRODS}:
      (sum {p in PATIENT_GROUPS} sumProd[p,pr] * Assign[p,g]) / totalProd[pr] - groupSize[g] / card(PATIENT_GROUPS) 
    = ProdErrorPlus[g,pr] - ProdErrorMinus[g,pr];
   impvar ProdError = sum {g in GROUPS, pr in PRODS} (ProdErrorPlus[g,pr] + ProdErrorMinus[g,pr]);

   /* minimize total error */
   min TotalError = BalanceError + RiskError + ProdError;

   /* call MILP solver */
   solve;

   /* create output data */
   impvar MeanBalance {g in GROUPS} = 
      (sum {p in PATIENT_GROUPS} sumBalance[p] * Assign[p,g]) / (sum {p in PATIENT_GROUPS} patientCount[p] * Assign[p,g]);
   impvar MeanRisk {g in GROUPS} = 
      (sum {p in PATIENT_GROUPS} sumRisk[p] * Assign[p,g]) / (sum {p in PATIENT_GROUPS} patientCount[p] * Assign[p,g]);
   impvar MeanProd {g in GROUPS, pr in PRODS} = 
      (sum {p in PATIENT_GROUPS} sumProd[p,pr] * Assign[p,g]) / (sum {p in PATIENT_GROUPS} patientCount[p] * Assign[p,g]);
   create data GroupOutdata from [Group] groupSize MeanBalance MeanRisk
      {pr in PRODS} <col(pr)=MeanProd[Group,pr]>;

   str assignedGroup {PATIENT_GROUPS};
   for {p in PATIENT_GROUPS} do;
      for {g in GROUPS: Assign[p,g].sol > 0.5} do;
         assignedGroup[p] = g;
         leave;
      end;
   end;
   create data PatientGroupOutdata from [PatientGroup=p] assignedGroup patientCount sumBalance sumRisk
      {pr in PRODS} <col(pr)=sumProd[p,pr]>;
quit;

View solution in original post

8 REPLIES 8
RobPratt
SAS Super FREQ

Does the following PROC OPTMODEL code do what you want?

proc optmodel;
   /* declare parameters and read data */
   set GROUPS = /Test Control/;
   num groupSize {GROUPS} = [18, 5];

   set OBS;
   str PatientGroup {OBS};
   num Balance {OBS};
   num Risk {OBS};
   str prod {OBS};
   read data indata into OBS=[_N_] PatientGroup Balance Risk prod;

   set PATIENT_GROUPS = setof {i in OBS} PatientGroup[i];
   set PRODS = setof {i in OBS} prod[i];
   set OBS_p {PATIENT_GROUPS} init {};
   num patientCount {PATIENT_GROUPS} init 0;
   num sumBalance {PATIENT_GROUPS} init 0;
   num sumRisk {PATIENT_GROUPS} init 0;
   num sumProd {PATIENT_GROUPS, PRODS} init 0;
   str p_this, pr_this;
   for {i in OBS} do;
      p_this = PatientGroup[i];
      OBS_p[p_this] = OBS_p[p_this] union {i};
      patientCount[p_this] = patientCount[p_this] + 1;
      sumBalance[p_this] = sumBalance[p_this] + Balance[i];
      sumRisk[p_this] = sumRisk[p_this] + Risk[i];
      pr_this = prod[i];
      sumProd[p_this, pr_this] = sumProd[p_this, pr_this] + 1;
   end;
   num totalBalance = sum {p in PATIENT_GROUPS} sumBalance[p];
   num totalRisk = sum {p in PATIENT_GROUPS} sumRisk[p];
   num totalProd {pr in PRODS} = sum {p in PATIENT_GROUPS} sumProd[p,pr];

   /* Assign[p,g] = 1 if patient group p is assigned to group g, 0 otherwise */
   var Assign {PATIENT_GROUPS, GROUPS} binary;

   /* assign each patient group to exactly one group */
   con AssignOnce {p in PATIENT_GROUPS}:
      sum {g in GROUPS} Assign[p,g] = 1;

   /* assign groupSize[g] patient groups to group g */
   con GroupSizeCon {g in GROUPS}:
      sum {p in PATIENT_GROUPS} Assign[p,g] = groupSize[g];

   /* penalize absolute difference from fair share for Balance */
   var BalanceErrorPlus {GROUPS} >= 0;
   var BalanceErrorMinus {GROUPS} >= 0;
   con BalanceErrorCon {g in GROUPS}:
      (sum {p in PATIENT_GROUPS} sumBalance[p] * Assign[p,g]) / totalBalance - groupSize[g] / card(PATIENT_GROUPS) 
    = BalanceErrorPlus[g] - BalanceErrorMinus[g];
   impvar BalanceError = sum {g in GROUPS} (BalanceErrorPlus[g] + BalanceErrorMinus[g]);

   /* penalize absolute difference from fair share for Risk */
   var RiskErrorPlus {GROUPS} >= 0;
   var RiskErrorMinus {GROUPS} >= 0;
   con RiskErrorCon {g in GROUPS}:
      (sum {p in PATIENT_GROUPS} sumRisk[p] * Assign[p,g]) / totalRisk - groupSize[g] / card(PATIENT_GROUPS) 
    = RiskErrorPlus[g] - RiskErrorMinus[g];
   impvar RiskError = sum {g in GROUPS} (RiskErrorPlus[g] + RiskErrorMinus[g]);

   /* penalize absolute difference from fair share for Prod */
   var ProdErrorPlus {GROUPS, PRODS} >= 0;
   var ProdErrorMinus {GROUPS, PRODS} >= 0;
   con ProdErrorCon {g in GROUPS, pr in PRODS}:
      (sum {p in PATIENT_GROUPS} sumProd[p,pr] * Assign[p,g]) / totalProd[pr] - groupSize[g] / card(PATIENT_GROUPS) 
    = ProdErrorPlus[g,pr] - ProdErrorMinus[g,pr];
   impvar ProdError = sum {g in GROUPS, pr in PRODS} (ProdErrorPlus[g,pr] + ProdErrorMinus[g,pr]);

   /* minimize total error */
   min TotalError = BalanceError + RiskError + ProdError;

   /* call MILP solver */
   solve;

   /* create output data */
   impvar MeanBalance {g in GROUPS} = 
      (sum {p in PATIENT_GROUPS} sumBalance[p] * Assign[p,g]) / (sum {p in PATIENT_GROUPS} patientCount[p] * Assign[p,g]);
   impvar MeanRisk {g in GROUPS} = 
      (sum {p in PATIENT_GROUPS} sumRisk[p] * Assign[p,g]) / (sum {p in PATIENT_GROUPS} patientCount[p] * Assign[p,g]);
   impvar MeanProd {g in GROUPS, pr in PRODS} = 
      (sum {p in PATIENT_GROUPS} sumProd[p,pr] * Assign[p,g]) / (sum {p in PATIENT_GROUPS} patientCount[p] * Assign[p,g]);
   create data GroupOutdata from [Group] groupSize MeanBalance MeanRisk
      {pr in PRODS} <col(pr)=MeanProd[Group,pr]>;

   str assignedGroup {PATIENT_GROUPS};
   for {p in PATIENT_GROUPS} do;
      for {g in GROUPS: Assign[p,g].sol > 0.5} do;
         assignedGroup[p] = g;
         leave;
      end;
   end;
   create data PatientGroupOutdata from [PatientGroup=p] assignedGroup patientCount sumBalance sumRisk
      {pr in PRODS} <col(pr)=sumProd[p,pr]>;
quit;
vicky07
Quartz | Level 8

Hi @RobPratt,

 

First off thank you for your resoonse. Your solution worked perfectly when I ran with the sample data but when i expanded my input data to 1,251 unique patientgroups I am getting the below following error. What is that I am doing wrong? Please advice. 

 

Thanks.

 

 

 

NOTE: Problem generation will use 2 threads.
ERROR: A linear coefficient for constraint 'RiskErrorCon[Test]' is missing or invalid.
ERROR: A linear coefficient for constraint 'RiskErrorCon[Control]' is missing or invalid.
NOTE: The problem has 2526 variables (0 free, 0 fixed).
NOTE: The problem uses 3 implicit variables.
NOTE: The problem has 2502 binary and 0 integer variables.
NOTE: The problem has 1265 linear constraints (0 LE, 1265 EQ, 0 GE, 0 range).
NOTE: The problem has 18332 linear constraint coefficients.
NOTE: The problem has 0 nonlinear constraints (0 LE, 0 EQ, 0 GE, 0 range).
NOTE: The OPTMODEL presolver is disabled for linear problems.
NOTE: Unable to create problem instance due to previous errors.

RobPratt
SAS Super FREQ

Do you have any missing values in your data?

vicky07
Quartz | Level 8

Yes. Fixed the missing values and was able to run the code however I am getting "Out of memory" erorr this time. 

 

I've attached my full log, not sure if that helps.

 

Thanks. 

vicky07
Quartz | Level 8

Apologize for the delay.  Attached my data. Thanks!!

RobPratt
SAS Super FREQ

Thanks for sending the additional data.  I was able to replicate the issue and have several suggestions.

 

  1. When the solver terminates (due to running out of memory or otherwise), it is supposed to return the best solution found so far.  There was a bug in SAS/OR 14.1 (SAS 9.4M3) where this didn't happen in the out-of-memory case.  That's why you see the "Division by zero" errors in the log.  A workaround is to use a SUBMIT block to call PROC OPTMILP, as described in this post.
  2. One approach to avoid running out of memory is to use the MEMSIZE option to increase the amount of memory available to SAS, as described in the documentation here.
  3. Another approach to avoid running out of memory is to use the MILP solver option NODESEL=DEPTH to do a depth-first search of the branch-and-cut tree.  This choice avoids creating a large tree, but the overall solve time might increase.
  4. In SAS/OR 14.1, the default log frequency sometimes writes many lines per second.  For your problem, LOGFREQ=10000 yields a more reasonable frequency.
  5. The version you are using is almost five years old, and we have had several releases since then, each with bug fixes, new features, and significant performance improvements.  I recommend upgrading to SAS/OR 15.1 (SAS 9.4M6) or SAS Optimization 8.5 (SAS Viya 3.5).
  6. No matter which version you use, you might consider setting some termination criteria like RELOBJGAP=0.05 or MAXTIME=600 to stop early with a good solution.  Often with MILP problems, the solver spends a long time trying to proving optimality after it has already found an optimal solution.  In that case, letting the solver run longer would not yield any better solution.

sas-innovate-wordmark-2025-midnight.png

Register Today!

Join us for SAS Innovate 2025, our biggest and most exciting global event of the year, in Orlando, FL, from May 6-9. Sign up by March 14 for just $795.


Register now!

Multiple Linear Regression in SAS

Learn how to run multiple linear regression models with and without interactions, presented by SAS user Alex Chaplin.

Find more tutorials on the SAS Users YouTube channel.

Discussion stats
  • 8 replies
  • 2225 views
  • 4 likes
  • 2 in conversation