Hello,
I’ve a challenge where I need to do even distribution of multiple parameters with in two groups. In my below data I have 23 unique patient ID groups. Each patient ID group has multiple records with varying balance, risk and prod type’s combinations.
I want to split the total unique patient id in to two groups. Group A is 80% and group B is 20%. So in this case Group A should be 18 unique patient ID and group B should be 5 patient group. This split percent could change every month. Next run could be 70/30 split.
What I am trying to achieve is similar mean balance, similar mean risk and uniform prod split between test and control groups. I was told that SAS/OR might solve this problem. I’ve SAS 9.4 Level 1M3 version.
Desired output:
Test |
|
Control |
||||||||
Mean Bal |
Mean Risk |
AH |
KO |
ZU |
|
Mean Bal |
Mean Risk |
AH |
KO |
ZU |
2700 |
0.676 |
38% |
22% |
40% |
|
2650 |
0.68 |
38% |
22% |
40% |
Any help is much appreciated. Thank you in advance for your time and attention!!
PS: I have close to 480 unique patient ID groups but I am sharing only few for sample purposes. So please let me know if you need more data.
My Data:
Patient Group |
Balance |
Risk |
prod |
3116290 |
4842.86 |
0.2222 |
ZU |
3116290 |
1423.83 |
0.0200 |
AH |
3116290 |
10040.3 |
0.0857 |
AH |
3116290 |
3081.93 |
0.1514 |
ZU |
3116290 |
4393.63 |
0.2171 |
AH |
3116290 |
12199.3 |
0.2829 |
ZU |
3116290 |
600.71 |
0.3486 |
KO |
3116290 |
5082.37 |
0.4143 |
AH |
3116290 |
13443.3 |
0.4800 |
KO |
3116290 |
8202.96 |
0.5457 |
ZU |
3116290 |
4601 |
0.6114 |
KO |
3480975 |
5169.2 |
0.8889 |
ZU |
3480975 |
6011.33 |
0.0429 |
AH |
3480975 |
1832.1 |
0.1086 |
KO |
3480975 |
2859.38 |
0.1743 |
KO |
3480975 |
8462.93 |
0.2400 |
ZU |
3480975 |
8318.86 |
0.3057 |
AH |
3480975 |
7715.96 |
0.3714 |
ZU |
3480975 |
2522.06 |
0.4371 |
AH |
3480975 |
1637.89 |
0.5029 |
ZU |
3480975 |
1942.42 |
0.5686 |
KO |
3480975 |
2478.48 |
0.6343 |
ZU |
3954070 |
14022.8 |
0.6667 |
AH |
3954070 |
4831.72 |
0.6667 |
ZU |
3954070 |
1000.32 |
0.0543 |
AH |
3954070 |
2466.47 |
0.1200 |
AH |
3954070 |
7685.72 |
0.1857 |
ZU |
3954070 |
2011.07 |
0.2514 |
KO |
3954070 |
9222.99 |
0.3171 |
ZU |
3954070 |
5234.82 |
0.3829 |
ZU |
3954070 |
7727.08 |
0.4486 |
AH |
3954070 |
9481.1 |
0.5143 |
KO |
3954070 |
6005.09 |
0.5800 |
AH |
3954070 |
1738.4 |
0.6457 |
KO |
4183977 |
5520.07 |
0.2222 |
AH |
4183977 |
4995.73 |
0.7778 |
KO |
4183977 |
10158 |
0.0629 |
ZU |
4183977 |
7960.01 |
0.1286 |
KO |
4183977 |
4713.21 |
0.1943 |
ZU |
4183977 |
10567.3 |
0.2600 |
KO |
4183977 |
9962.74 |
0.3257 |
ZU |
4183977 |
2846.64 |
0.3914 |
KO |
4183977 |
4343.59 |
0.4571 |
AH |
4183977 |
5405.71 |
0.5229 |
ZU |
4183977 |
10297.6 |
0.5886 |
AH |
5692230 |
6074.19 |
0.6667 |
KO |
5692230 |
5847.36 |
0.0114 |
ZU |
5692230 |
3724.57 |
0.0771 |
AH |
5692230 |
5670 |
0.1429 |
ZU |
5692230 |
6360.26 |
0.2086 |
KO |
5692230 |
3020.87 |
0.2743 |
AH |
5692230 |
773.24 |
0.3400 |
AH |
5692230 |
3565.45 |
0.4057 |
ZU |
5692230 |
1610.1 |
0.4714 |
KO |
5692230 |
7046.04 |
0.5371 |
ZU |
5692230 |
2315.76 |
0.6029 |
KO |
5852387 |
2407.18 |
0.7778 |
ZU |
5852387 |
16275 |
0.0343 |
AH |
5852387 |
5783.73 |
0.1000 |
KO |
5852387 |
7513.21 |
0.1657 |
AH |
5852387 |
1604.84 |
0.2314 |
KO |
5852387 |
5114.36 |
0.2971 |
AH |
5852387 |
4473.8 |
0.3629 |
ZU |
5852387 |
7395.58 |
0.4286 |
AH |
5852387 |
13924 |
0.4943 |
ZU |
5852387 |
8483.98 |
0.5600 |
KO |
5852387 |
14856 |
0.6257 |
AH |
5981283 |
3942.05 |
0.1111 |
AH |
5981283 |
8109.96 |
0.0314 |
KO |
5981283 |
2604.99 |
0.0971 |
ZU |
5981283 |
1627.6 |
0.1629 |
KO |
5981283 |
10124.5 |
0.2286 |
ZU |
5981283 |
4503.83 |
0.2943 |
KO |
5981283 |
2077.9 |
0.3600 |
AH |
5981283 |
4858.14 |
0.4257 |
KO |
5981283 |
15987.3 |
0.4914 |
KO |
5981283 |
5338.41 |
0.5571 |
ZU |
5981283 |
5411.3 |
0.6229 |
AH |
6681096 |
2671.5 |
0.4444 |
ZU |
6681096 |
2014.46 |
0.8889 |
AH |
6681096 |
10174.2 |
0.0657 |
KO |
6681096 |
7755.11 |
0.1314 |
AH |
6681096 |
9176.04 |
0.1971 |
KO |
6681096 |
6199.91 |
0.2629 |
AH |
6681096 |
5959.14 |
0.3286 |
KO |
6681096 |
4568.93 |
0.3943 |
AH |
6681096 |
4901.56 |
0.4600 |
ZU |
6681096 |
7179.79 |
0.5257 |
KO |
6681096 |
4385.1 |
0.5914 |
AH |
6712099 |
4458.79 |
0.8889 |
KO |
6712099 |
1081.77 |
0.0286 |
ZU |
6712099 |
1882.14 |
0.0943 |
KO |
6712099 |
4956.5 |
0.1600 |
ZU |
6712099 |
1923.54 |
0.2257 |
AH |
6712099 |
5555.1 |
0.2914 |
ZU |
6712099 |
5857.5 |
0.3571 |
KO |
6712099 |
951.77 |
0.4229 |
ZU |
6712099 |
4765.94 |
0.4886 |
ZU |
6712099 |
3899.5 |
0.5543 |
AH |
6712099 |
1566.08 |
0.6200 |
KO |
6915827 |
10802.4 |
0.1111 |
AH |
6915827 |
6550.25 |
0.3333 |
KO |
6915827 |
6538.26 |
0.0457 |
ZU |
6915827 |
9412.25 |
0.1114 |
AH |
6915827 |
11126.8 |
0.1771 |
ZU |
6915827 |
3565.03 |
0.2429 |
KO |
6915827 |
5312.21 |
0.3086 |
AH |
6915827 |
2552.77 |
0.3743 |
KO |
6915827 |
9565.37 |
0.4400 |
ZU |
6915827 |
3142.98 |
0.5057 |
KO |
6915827 |
2162.13 |
0.5714 |
AH |
6915827 |
5518.75 |
0.6371 |
KO |
7081267 |
1990.64 |
0.1111 |
KO |
7081267 |
2306.08 |
0.0229 |
ZU |
7081267 |
1774.27 |
0.0886 |
AH |
7081267 |
5419.36 |
0.1543 |
KO |
7081267 |
5446.57 |
0.2200 |
ZU |
7081267 |
5760.97 |
0.2857 |
KO |
7081267 |
8158.38 |
0.3514 |
AH |
7081267 |
3845.6 |
0.4171 |
ZU |
7081267 |
7852.74 |
0.4829 |
AH |
7081267 |
9937.26 |
0.5486 |
KO |
7081267 |
9644.65 |
0.6143 |
AH |
7712089 |
8489.78 |
0.4444 |
AH |
7712089 |
11872.2 |
0.0143 |
KO |
7712089 |
6018.03 |
0.0800 |
ZU |
7712089 |
2368.36 |
0.1457 |
KO |
7712089 |
7418.02 |
0.2114 |
ZU |
7712089 |
1725.35 |
0.2771 |
ZU |
7712089 |
5759.08 |
0.3429 |
AH |
7712089 |
5251.2 |
0.4086 |
KO |
7712089 |
5822.4 |
0.4743 |
AH |
7712089 |
5829.46 |
0.5400 |
KO |
7712089 |
3064.08 |
0.6057 |
AH |
7823183 |
1314.14 |
0.1111 |
KO |
7823183 |
10605.1 |
0.5556 |
ZU |
7823183 |
734.27 |
0.0600 |
KO |
7823183 |
3428.32 |
0.1257 |
ZU |
7823183 |
8687.86 |
0.1914 |
AH |
7823183 |
6893.45 |
0.2571 |
ZU |
7823183 |
5771.71 |
0.3229 |
AH |
7823183 |
7104.48 |
0.3886 |
ZU |
7823183 |
1906.69 |
0.4543 |
KO |
7823183 |
7374.7 |
0.5200 |
AH |
7823183 |
2243.76 |
0.5857 |
KO |
7854689 |
5999.57 |
0.0235 |
ZU |
7854689 |
6328.44 |
0.0086 |
AH |
7854689 |
2025.56 |
0.0743 |
KO |
7854689 |
9011.13 |
0.1400 |
AH |
7854689 |
2396.85 |
0.2057 |
ZU |
7854689 |
1499.99 |
0.2714 |
AH |
7854689 |
3843.56 |
0.3371 |
KO |
7854689 |
1807.62 |
0.4029 |
AH |
7854689 |
1381.71 |
0.4686 |
ZU |
7854689 |
2279.52 |
0.5343 |
AH |
7854689 |
3627.87 |
0.6000 |
ZU |
7893195 |
4203.73 |
0.3333 |
ZU |
7893195 |
6851.77 |
0.0257 |
KO |
7893195 |
4976.24 |
0.0914 |
ZU |
7893195 |
16976.4 |
0.1571 |
AH |
7893195 |
6642.81 |
0.2229 |
KO |
7893195 |
5181.4 |
0.2886 |
AH |
7893195 |
8186.85 |
0.3543 |
ZU |
7893195 |
543.88 |
0.4200 |
KO |
7893195 |
2767.34 |
0.4857 |
AH |
7893195 |
3503.75 |
0.5514 |
AH |
7893195 |
5646.97 |
0.6171 |
ZU |
7985432 |
1625.6 |
0.3333 |
AH |
7985432 |
6007.09 |
0.0171 |
AH |
7985432 |
9309.43 |
0.0829 |
KO |
7985432 |
2554.18 |
0.1486 |
AH |
7985432 |
14081 |
0.2143 |
KO |
7985432 |
1938.99 |
0.2800 |
KO |
7985432 |
2127.68 |
0.3457 |
ZU |
7985432 |
6490.22 |
0.4114 |
AH |
7985432 |
13093.2 |
0.4771 |
ZU |
7985432 |
2370 |
0.5429 |
AH |
7985432 |
3034.79 |
0.6086 |
ZU |
8609457 |
2629.98 |
0.8889 |
AH |
8609457 |
3266.02 |
0.0057 |
KO |
8609457 |
6573.52 |
0.0714 |
ZU |
8609457 |
5726.06 |
0.1371 |
KO |
8609457 |
13919.8 |
0.2029 |
AH |
8609457 |
5175.39 |
0.2686 |
KO |
8609457 |
1563.75 |
0.3343 |
ZU |
8609457 |
3317.71 |
0.4000 |
KO |
8609457 |
11042.2 |
0.4657 |
AH |
8609457 |
6191.83 |
0.5314 |
KO |
8609457 |
3106.54 |
0.5971 |
KO |
8762365 |
10710.1 |
0.4444 |
ZU |
8762365 |
10390.2 |
0.4444 |
AH |
8762365 |
3769.6 |
0.0486 |
KO |
8762365 |
3877.63 |
0.1143 |
ZU |
8762365 |
12776.3 |
0.1800 |
KO |
8762365 |
7184.28 |
0.2457 |
AH |
8762365 |
570.75 |
0.3114 |
ZU |
8762365 |
2574.02 |
0.3771 |
AH |
8762365 |
3385.32 |
0.4429 |
KO |
8762365 |
2440.11 |
0.5086 |
AH |
8762365 |
2588.24 |
0.5743 |
ZU |
8762365 |
1598.54 |
0.6400 |
AH |
8764589 |
6235.53 |
0.8889 |
ZU |
8764589 |
7318.75 |
0.2222 |
KO |
8764589 |
3556.55 |
0.0571 |
ZU |
8764589 |
8079.75 |
0.1229 |
AH |
8764589 |
4582.75 |
0.1886 |
KO |
8764589 |
2720.45 |
0.2543 |
AH |
8764589 |
2249.32 |
0.3200 |
KO |
8764589 |
4456.55 |
0.3857 |
KO |
8764589 |
10328.1 |
0.4514 |
ZU |
8764589 |
14134.1 |
0.5171 |
AH |
8764589 |
9372.82 |
0.5829 |
ZU |
8908712 |
2846.48 |
0.5556 |
KO |
8908712 |
6355.41 |
0.7778 |
AH |
8908712 |
8377.28 |
0.0514 |
AH |
8908712 |
1724.81 |
0.1171 |
KO |
8908712 |
3780.54 |
0.1829 |
AH |
8908712 |
3842.75 |
0.2486 |
ZU |
8908712 |
3941.74 |
0.3143 |
KO |
8908712 |
10141.9 |
0.3800 |
AH |
8908712 |
6379.06 |
0.4457 |
AH |
8908712 |
9135.39 |
0.5114 |
ZU |
8908712 |
10832 |
0.5771 |
KO |
8908712 |
4100.04 |
0.6429 |
ZU |
8923394 |
16299.4 |
0.1111 |
KO |
8923394 |
1665.49 |
0.0371 |
ZU |
8923394 |
11165.4 |
0.1029 |
AH |
8923394 |
6492.05 |
0.1686 |
AH |
8923394 |
1379.13 |
0.2343 |
AH |
8923394 |
8787.07 |
0.3000 |
ZU |
8923394 |
11570.8 |
0.3657 |
KO |
8923394 |
2021.29 |
0.4314 |
ZU |
8923394 |
5785.57 |
0.4971 |
KO |
8923394 |
3702.73 |
0.5629 |
AH |
8923394 |
1947.92 |
0.6286 |
ZU |
9129938 |
2434.89 |
0.5556 |
KO |
9129938 |
929.46 |
0.0029 |
ZU |
9129938 |
11754.9 |
0.0686 |
AH |
9129938 |
3575.18 |
0.1343 |
ZU |
9129938 |
6434.74 |
0.2000 |
AH |
9129938 |
7206.08 |
0.2657 |
ZU |
9129938 |
4188.49 |
0.3314 |
AH |
9129938 |
5805.92 |
0.3971 |
ZU |
9129938 |
796.84 |
0.4629 |
KO |
9129938 |
10338.7 |
0.5286 |
ZU |
9129938 |
4977.87 |
0.5943 |
ZU |
9871098 |
5769.37 |
0.9822 |
AH |
9871098 |
1052.96 |
0.0400 |
KO |
9871098 |
5279.43 |
0.1057 |
ZU |
9871098 |
2122.15 |
0.1714 |
ZU |
9871098 |
3295.09 |
0.2371 |
AH |
9871098 |
8973.24 |
0.3029 |
KO |
9871098 |
5101.27 |
0.3686 |
AH |
9871098 |
7284.64 |
0.4343 |
KO |
9871098 |
1726.34 |
0.5000 |
AH |
9871098 |
8804.15 |
0.5657 |
ZU |
9871098 |
10659.6 |
0.6314 |
KO |
Does the following PROC OPTMODEL code do what you want?
proc optmodel;
/* declare parameters and read data */
set GROUPS = /Test Control/;
num groupSize {GROUPS} = [18, 5];
set OBS;
str PatientGroup {OBS};
num Balance {OBS};
num Risk {OBS};
str prod {OBS};
read data indata into OBS=[_N_] PatientGroup Balance Risk prod;
set PATIENT_GROUPS = setof {i in OBS} PatientGroup[i];
set PRODS = setof {i in OBS} prod[i];
set OBS_p {PATIENT_GROUPS} init {};
num patientCount {PATIENT_GROUPS} init 0;
num sumBalance {PATIENT_GROUPS} init 0;
num sumRisk {PATIENT_GROUPS} init 0;
num sumProd {PATIENT_GROUPS, PRODS} init 0;
str p_this, pr_this;
for {i in OBS} do;
p_this = PatientGroup[i];
OBS_p[p_this] = OBS_p[p_this] union {i};
patientCount[p_this] = patientCount[p_this] + 1;
sumBalance[p_this] = sumBalance[p_this] + Balance[i];
sumRisk[p_this] = sumRisk[p_this] + Risk[i];
pr_this = prod[i];
sumProd[p_this, pr_this] = sumProd[p_this, pr_this] + 1;
end;
num totalBalance = sum {p in PATIENT_GROUPS} sumBalance[p];
num totalRisk = sum {p in PATIENT_GROUPS} sumRisk[p];
num totalProd {pr in PRODS} = sum {p in PATIENT_GROUPS} sumProd[p,pr];
/* Assign[p,g] = 1 if patient group p is assigned to group g, 0 otherwise */
var Assign {PATIENT_GROUPS, GROUPS} binary;
/* assign each patient group to exactly one group */
con AssignOnce {p in PATIENT_GROUPS}:
sum {g in GROUPS} Assign[p,g] = 1;
/* assign groupSize[g] patient groups to group g */
con GroupSizeCon {g in GROUPS}:
sum {p in PATIENT_GROUPS} Assign[p,g] = groupSize[g];
/* penalize absolute difference from fair share for Balance */
var BalanceErrorPlus {GROUPS} >= 0;
var BalanceErrorMinus {GROUPS} >= 0;
con BalanceErrorCon {g in GROUPS}:
(sum {p in PATIENT_GROUPS} sumBalance[p] * Assign[p,g]) / totalBalance - groupSize[g] / card(PATIENT_GROUPS)
= BalanceErrorPlus[g] - BalanceErrorMinus[g];
impvar BalanceError = sum {g in GROUPS} (BalanceErrorPlus[g] + BalanceErrorMinus[g]);
/* penalize absolute difference from fair share for Risk */
var RiskErrorPlus {GROUPS} >= 0;
var RiskErrorMinus {GROUPS} >= 0;
con RiskErrorCon {g in GROUPS}:
(sum {p in PATIENT_GROUPS} sumRisk[p] * Assign[p,g]) / totalRisk - groupSize[g] / card(PATIENT_GROUPS)
= RiskErrorPlus[g] - RiskErrorMinus[g];
impvar RiskError = sum {g in GROUPS} (RiskErrorPlus[g] + RiskErrorMinus[g]);
/* penalize absolute difference from fair share for Prod */
var ProdErrorPlus {GROUPS, PRODS} >= 0;
var ProdErrorMinus {GROUPS, PRODS} >= 0;
con ProdErrorCon {g in GROUPS, pr in PRODS}:
(sum {p in PATIENT_GROUPS} sumProd[p,pr] * Assign[p,g]) / totalProd[pr] - groupSize[g] / card(PATIENT_GROUPS)
= ProdErrorPlus[g,pr] - ProdErrorMinus[g,pr];
impvar ProdError = sum {g in GROUPS, pr in PRODS} (ProdErrorPlus[g,pr] + ProdErrorMinus[g,pr]);
/* minimize total error */
min TotalError = BalanceError + RiskError + ProdError;
/* call MILP solver */
solve;
/* create output data */
impvar MeanBalance {g in GROUPS} =
(sum {p in PATIENT_GROUPS} sumBalance[p] * Assign[p,g]) / (sum {p in PATIENT_GROUPS} patientCount[p] * Assign[p,g]);
impvar MeanRisk {g in GROUPS} =
(sum {p in PATIENT_GROUPS} sumRisk[p] * Assign[p,g]) / (sum {p in PATIENT_GROUPS} patientCount[p] * Assign[p,g]);
impvar MeanProd {g in GROUPS, pr in PRODS} =
(sum {p in PATIENT_GROUPS} sumProd[p,pr] * Assign[p,g]) / (sum {p in PATIENT_GROUPS} patientCount[p] * Assign[p,g]);
create data GroupOutdata from [Group] groupSize MeanBalance MeanRisk
{pr in PRODS} <col(pr)=MeanProd[Group,pr]>;
str assignedGroup {PATIENT_GROUPS};
for {p in PATIENT_GROUPS} do;
for {g in GROUPS: Assign[p,g].sol > 0.5} do;
assignedGroup[p] = g;
leave;
end;
end;
create data PatientGroupOutdata from [PatientGroup=p] assignedGroup patientCount sumBalance sumRisk
{pr in PRODS} <col(pr)=sumProd[p,pr]>;
quit;
Does the following PROC OPTMODEL code do what you want?
proc optmodel;
/* declare parameters and read data */
set GROUPS = /Test Control/;
num groupSize {GROUPS} = [18, 5];
set OBS;
str PatientGroup {OBS};
num Balance {OBS};
num Risk {OBS};
str prod {OBS};
read data indata into OBS=[_N_] PatientGroup Balance Risk prod;
set PATIENT_GROUPS = setof {i in OBS} PatientGroup[i];
set PRODS = setof {i in OBS} prod[i];
set OBS_p {PATIENT_GROUPS} init {};
num patientCount {PATIENT_GROUPS} init 0;
num sumBalance {PATIENT_GROUPS} init 0;
num sumRisk {PATIENT_GROUPS} init 0;
num sumProd {PATIENT_GROUPS, PRODS} init 0;
str p_this, pr_this;
for {i in OBS} do;
p_this = PatientGroup[i];
OBS_p[p_this] = OBS_p[p_this] union {i};
patientCount[p_this] = patientCount[p_this] + 1;
sumBalance[p_this] = sumBalance[p_this] + Balance[i];
sumRisk[p_this] = sumRisk[p_this] + Risk[i];
pr_this = prod[i];
sumProd[p_this, pr_this] = sumProd[p_this, pr_this] + 1;
end;
num totalBalance = sum {p in PATIENT_GROUPS} sumBalance[p];
num totalRisk = sum {p in PATIENT_GROUPS} sumRisk[p];
num totalProd {pr in PRODS} = sum {p in PATIENT_GROUPS} sumProd[p,pr];
/* Assign[p,g] = 1 if patient group p is assigned to group g, 0 otherwise */
var Assign {PATIENT_GROUPS, GROUPS} binary;
/* assign each patient group to exactly one group */
con AssignOnce {p in PATIENT_GROUPS}:
sum {g in GROUPS} Assign[p,g] = 1;
/* assign groupSize[g] patient groups to group g */
con GroupSizeCon {g in GROUPS}:
sum {p in PATIENT_GROUPS} Assign[p,g] = groupSize[g];
/* penalize absolute difference from fair share for Balance */
var BalanceErrorPlus {GROUPS} >= 0;
var BalanceErrorMinus {GROUPS} >= 0;
con BalanceErrorCon {g in GROUPS}:
(sum {p in PATIENT_GROUPS} sumBalance[p] * Assign[p,g]) / totalBalance - groupSize[g] / card(PATIENT_GROUPS)
= BalanceErrorPlus[g] - BalanceErrorMinus[g];
impvar BalanceError = sum {g in GROUPS} (BalanceErrorPlus[g] + BalanceErrorMinus[g]);
/* penalize absolute difference from fair share for Risk */
var RiskErrorPlus {GROUPS} >= 0;
var RiskErrorMinus {GROUPS} >= 0;
con RiskErrorCon {g in GROUPS}:
(sum {p in PATIENT_GROUPS} sumRisk[p] * Assign[p,g]) / totalRisk - groupSize[g] / card(PATIENT_GROUPS)
= RiskErrorPlus[g] - RiskErrorMinus[g];
impvar RiskError = sum {g in GROUPS} (RiskErrorPlus[g] + RiskErrorMinus[g]);
/* penalize absolute difference from fair share for Prod */
var ProdErrorPlus {GROUPS, PRODS} >= 0;
var ProdErrorMinus {GROUPS, PRODS} >= 0;
con ProdErrorCon {g in GROUPS, pr in PRODS}:
(sum {p in PATIENT_GROUPS} sumProd[p,pr] * Assign[p,g]) / totalProd[pr] - groupSize[g] / card(PATIENT_GROUPS)
= ProdErrorPlus[g,pr] - ProdErrorMinus[g,pr];
impvar ProdError = sum {g in GROUPS, pr in PRODS} (ProdErrorPlus[g,pr] + ProdErrorMinus[g,pr]);
/* minimize total error */
min TotalError = BalanceError + RiskError + ProdError;
/* call MILP solver */
solve;
/* create output data */
impvar MeanBalance {g in GROUPS} =
(sum {p in PATIENT_GROUPS} sumBalance[p] * Assign[p,g]) / (sum {p in PATIENT_GROUPS} patientCount[p] * Assign[p,g]);
impvar MeanRisk {g in GROUPS} =
(sum {p in PATIENT_GROUPS} sumRisk[p] * Assign[p,g]) / (sum {p in PATIENT_GROUPS} patientCount[p] * Assign[p,g]);
impvar MeanProd {g in GROUPS, pr in PRODS} =
(sum {p in PATIENT_GROUPS} sumProd[p,pr] * Assign[p,g]) / (sum {p in PATIENT_GROUPS} patientCount[p] * Assign[p,g]);
create data GroupOutdata from [Group] groupSize MeanBalance MeanRisk
{pr in PRODS} <col(pr)=MeanProd[Group,pr]>;
str assignedGroup {PATIENT_GROUPS};
for {p in PATIENT_GROUPS} do;
for {g in GROUPS: Assign[p,g].sol > 0.5} do;
assignedGroup[p] = g;
leave;
end;
end;
create data PatientGroupOutdata from [PatientGroup=p] assignedGroup patientCount sumBalance sumRisk
{pr in PRODS} <col(pr)=sumProd[p,pr]>;
quit;
Hi @RobPratt,
First off thank you for your resoonse. Your solution worked perfectly when I ran with the sample data but when i expanded my input data to 1,251 unique patientgroups I am getting the below following error. What is that I am doing wrong? Please advice.
Thanks.
NOTE: Problem generation will use 2 threads.
ERROR: A linear coefficient for constraint 'RiskErrorCon[Test]' is missing or invalid.
ERROR: A linear coefficient for constraint 'RiskErrorCon[Control]' is missing or invalid.
NOTE: The problem has 2526 variables (0 free, 0 fixed).
NOTE: The problem uses 3 implicit variables.
NOTE: The problem has 2502 binary and 0 integer variables.
NOTE: The problem has 1265 linear constraints (0 LE, 1265 EQ, 0 GE, 0 range).
NOTE: The problem has 18332 linear constraint coefficients.
NOTE: The problem has 0 nonlinear constraints (0 LE, 0 EQ, 0 GE, 0 range).
NOTE: The OPTMODEL presolver is disabled for linear problems.
NOTE: Unable to create problem instance due to previous errors.
Do you have any missing values in your data?
Yes. Fixed the missing values and was able to run the code however I am getting "Out of memory" erorr this time.
I've attached my full log, not sure if that helps.
Thanks.
Are you able to share the data?
Apologize for the delay. Attached my data. Thanks!!
Thanks for sending the additional data. I was able to replicate the issue and have several suggestions.
Join us for SAS Innovate 2025, our biggest and most exciting global event of the year, in Orlando, FL, from May 6-9. Sign up by March 14 for just $795.
Learn how to run multiple linear regression models with and without interactions, presented by SAS user Alex Chaplin.
Find more tutorials on the SAS Users YouTube channel.