Dear all, I wish to plot a graph which has a series and a scatter plot in it : Hier is the original data
Sector | 2012 | 2013 | 2014 | 2015 | 2016 | 2017 | 2018 | 2019 |
Bank 1 | 825 | 846 | 846 | 847 | 865 | 862 | 850 | 868 |
Bank 2 | 810 | 829 | 845 | 845 | 853 | 848 | 846 | 872 |
Bank 3 | 834 | 822 | 836 | 833 | 850 | 856 | 844 | 854 |
Bank 4 | 797 | 808 | 825 | 789 | 820 | 823 | 832 | 853 |
Bank 5 | 849 | 851 | 851 | 851 | 858 | 862 | 842 | 861 |
Bank 6 | 838 | 841 | 825 | 840 | 845 | 848 | 829 | 853 |
Bank 7 | 787 | 803 | 798 | 828 | 845 | 843 | 840 | 849 |
Bank 8 | 792 | 800 | 815 | 821 | 835 | 834 | 832 | 849 |
Bank 9 | 795 | 807 | 820 | 825 | 843 | 834 | 839 | 855 |
Bank 10 | 834 | 837 | 826 | 842 | 839 | 853 | 838 | 868 |
Bank 11 | 810 | 833 | 837 | 838 | 852 | 858 | 849 | 871 |
Bank 12 | 807 | 820 | 807 | 815 | 845 | 837 | 848 | 846 |
Bank 13 | 811 | 800 | 804 | 805 | 831 | 831 | 827 | 847 |
Bank 14 | 804 | 827 | 829 | 829 | 837 | 836 | 823 | 854 |
Bank 15 | 784 | 798 | 798 | 790 | 830 | 828 | 818 | 852 |
Bank 16 | 818 | 811 | 824 | 815 | 848 | 837 | 833 | 851 |
Bank 17 | 795 | 786 | 794 | 803 | 817 | 817 | 819 | 856 |
Bank 18 | 823 | 829 | 811 | 831 | 837 | 850 | 827 | 866 |
Bank 19 | 775 | 775 | 769 | 783 | 806 | 813 | 800 | 832 |
Bank 20 | 757 | 771 | 789 | 804 | 813 | 822 | 809 | 852 |
Bank 21 | 767 | 759 | 757 | 704 | 751 | 768 | 771 | 811 |
Bank 22 | 772 | 761 | 755 | 758 | 791 | 792 | 787 | 826 |
Average sector | 795 | 800 | 804 | 812 | 830 | 832 | 824 | 846 |
Bank A | 774 | 785 | 805 | 833 | 839 | 843 | 827 | 836 |
I want the scatter plot for all the 22 banks and the series for Bank A and Average sector . I tried doing that by tranposing the table to become this:
Sector | Year | Value |
Bank 1 | 2012 | 825 |
Bank 2 | 2012 | 810 |
Bank 3 | 2012 | 834 |
Bank 4 | 2012 | 797 |
Bank 5 | 2012 | 849 |
Bank 6 | 2012 | 838 |
Bank 7 | 2012 | 787 |
Bank 8 | 2012 | 792 |
Bank 9 | 2012 | 795 |
Bank 10 | 2012 | 834 |
Bank 11 | 2012 | 810 |
Bank 12 | 2012 | 807 |
Bank 13 | 2012 | 811 |
Bank 14 | 2012 | 804 |
Bank 15 | 2012 | 784 |
Bank 16 | 2012 | 818 |
Bank 17 | 2012 | 795 |
Bank 18 | 2012 | 823 |
Bank 19 | 2012 | 775 |
Bank 20 | 2012 | 757 |
Bank 21 | 2012 | 767 |
Bank 22 | 2012 | 772 |
Average sector | 2012 | 795 |
Bank A | 2012 | 774 |
Bank 1 | 2013 | 846 |
Bank 2 | 2013 | 829 |
Bank 3 | 2013 | 822 |
Bank 4 | 2013 | 808 |
Bank 5 | 2013 | 851 |
Bank 6 | 2013 | 841 |
Bank 7 | 2013 | 803 |
Bank 8 | 2013 | 800 |
Bank 9 | 2013 | 807 |
Bank 10 | 2013 | 837 |
Bank 11 | 2013 | 833 |
Bank 12 | 2013 | 820 |
Bank 13 | 2013 | 800 |
Bank 14 | 2013 | 827 |
Bank 15 | 2013 | 798 |
Bank 16 | 2013 | 811 |
Bank 17 | 2013 | 786 |
Bank 18 | 2013 | 829 |
Bank 19 | 2013 | 775 |
Bank 20 | 2013 | 771 |
Bank 21 | 2013 | 759 |
Bank 22 | 2013 | 761 |
Average sector | 2013 | 800 |
Bank A | 2013 | 785 |
Bank 1 | 2014 | 846 |
Bank 2 | 2014 | 845 |
Bank 3 | 2014 | 836 |
Bank 4 | 2014 | 825 |
Bank 5 | 2014 | 851 |
Bank 6 | 2014 | 825 |
Bank 7 | 2014 | 798 |
Bank 8 | 2014 | 815 |
Bank 9 | 2014 | 820 |
Bank 10 | 2014 | 826 |
Bank 11 | 2014 | 837 |
Bank 12 | 2014 | 807 |
Bank 13 | 2014 | 804 |
Bank 14 | 2014 | 829 |
Bank 15 | 2014 | 798 |
Bank 16 | 2014 | 824 |
Bank 17 | 2014 | 794 |
Bank 18 | 2014 | 811 |
Bank 19 | 2014 | 769 |
Bank 20 | 2014 | 789 |
Bank 21 | 2014 | 757 |
Bank 22 | 2014 | 755 |
Average sector | 2014 | 804 |
Bank A | 2014 | 805 |
Bank 1 | 2015 | 847 |
Bank 2 | 2015 | 845 |
Bank 3 | 2015 | 833 |
Bank 4 | 2015 | 789 |
Bank 5 | 2015 | 851 |
Bank 6 | 2015 | 840 |
Bank 7 | 2015 | 828 |
Bank 8 | 2015 | 821 |
Bank 9 | 2015 | 825 |
Bank 10 | 2015 | 842 |
Bank 11 | 2015 | 838 |
Bank 12 | 2015 | 815 |
Bank 13 | 2015 | 805 |
Bank 14 | 2015 | 829 |
Bank 15 | 2015 | 790 |
Bank 16 | 2015 | 815 |
Bank 17 | 2015 | 803 |
Bank 18 | 2015 | 831 |
Bank 19 | 2015 | 783 |
Bank 20 | 2015 | 804 |
Bank 21 | 2015 | 704 |
Bank 22 | 2015 | 758 |
Average sector | 2015 | 812 |
Bank A | 2015 | 833 |
Bank 1 | 2016 | 865 |
Bank 2 | 2016 | 853 |
Bank 3 | 2016 | 850 |
Bank 4 | 2016 | 820 |
Bank 5 | 2016 | 858 |
Bank 6 | 2016 | 845 |
Bank 7 | 2016 | 845 |
Bank 8 | 2016 | 835 |
Bank 9 | 2016 | 843 |
Bank 10 | 2016 | 839 |
Bank 11 | 2016 | 852 |
Bank 12 | 2016 | 845 |
Bank 13 | 2016 | 831 |
Bank 14 | 2016 | 837 |
Bank 15 | 2016 | 830 |
Bank 16 | 2016 | 848 |
Bank 17 | 2016 | 817 |
Bank 18 | 2016 | 837 |
Bank 19 | 2016 | 806 |
Bank 20 | 2016 | 813 |
Bank 21 | 2016 | 751 |
Bank 22 | 2016 | 791 |
Average sector | 2016 | 830 |
Bank A | 2016 | 839 |
Bank 1 | 2017 | 862 |
Bank 2 | 2017 | 848 |
Bank 3 | 2017 | 856 |
Bank 4 | 2017 | 823 |
Bank 5 | 2017 | 862 |
Bank 6 | 2017 | 848 |
Bank 7 | 2017 | 843 |
Bank 8 | 2017 | 834 |
Bank 9 | 2017 | 834 |
Bank 10 | 2017 | 853 |
Bank 11 | 2017 | 858 |
Bank 12 | 2017 | 837 |
Bank 13 | 2017 | 831 |
Bank 14 | 2017 | 836 |
Bank 15 | 2017 | 828 |
Bank 16 | 2017 | 837 |
Bank 17 | 2017 | 817 |
Bank 18 | 2017 | 850 |
Bank 19 | 2017 | 813 |
Bank 20 | 2017 | 822 |
Bank 21 | 2017 | 768 |
Bank 22 | 2017 | 792 |
Average sector | 2017 | 832 |
Bank A | 2017 | 843 |
Bank 1 | 2018 | 850 |
Bank 2 | 2018 | 846 |
Bank 3 | 2018 | 844 |
Bank 4 | 2018 | 832 |
Bank 5 | 2018 | 842 |
Bank 6 | 2018 | 829 |
Bank 7 | 2018 | 840 |
Bank 8 | 2018 | 832 |
Bank 9 | 2018 | 839 |
Bank 10 | 2018 | 838 |
Bank 11 | 2018 | 849 |
Bank 12 | 2018 | 848 |
Bank 13 | 2018 | 827 |
Bank 14 | 2018 | 823 |
Bank 15 | 2018 | 818 |
Bank 16 | 2018 | 833 |
Bank 17 | 2018 | 819 |
Bank 18 | 2018 | 827 |
Bank 19 | 2018 | 800 |
Bank 20 | 2018 | 809 |
Bank 21 | 2018 | 771 |
Bank 22 | 2018 | 787 |
Average sector | 2018 | 824 |
Bank A | 2018 | 827 |
Bank 1 | 2019 | 868 |
Bank 2 | 2019 | 872 |
Bank 3 | 2019 | 854 |
Bank 4 | 2019 | 853 |
Bank 5 | 2019 | 861 |
Bank 6 | 2019 | 853 |
Bank 7 | 2019 | 849 |
Bank 8 | 2019 | 849 |
Bank 9 | 2019 | 855 |
Bank 10 | 2019 | 868 |
Bank 11 | 2019 | 871 |
Bank 12 | 2019 | 846 |
Bank 13 | 2019 | 847 |
Bank 14 | 2019 | 854 |
Bank 15 | 2019 | 852 |
Bank 16 | 2019 | 851 |
Bank 17 | 2019 | 856 |
Bank 18 | 2019 | 866 |
Bank 19 | 2019 | 832 |
Bank 20 | 2019 | 852 |
Bank 21 | 2019 | 811 |
Bank 22 | 2019 | 826 |
Average sector | 2019 | 846 |
Bank A | 2019 | 836 |
and using this code:
proc sgplot data=CombinedData;
/* Scatter plot for all banks except "Bank A" and "Sector Average" */
scatter x=Year y=Value / group=Group
markerattrs=(symbol=circlefilled size=10 color=gray) transparency=0.5;
/* Series plot for "Bank A" */
series x=Year y=Value / group=Group
lineattrs=(thickness=2 color=red) markerattrs=(size=6 ) legendlabel="Bank A";
/* Series plot for "Sector Average" */
series x=Year y=Value / group=Group
lineattrs=(thickness=2 color=yellow)
markerattrs=(size=6) legendlabel="Sector Average";
/* Titles and Labels */
title "Satisfaction with Face-to-Face User Support (2012-2019)";
xaxis label="Year" values=(2012 to 2019 by 1);
yaxis label="Satisfaction Value" values=(700 to 900 by 20) grid;
/* Legend Position */
keylegend / location=inside position=topright across=1;
run;
but unfortunately am not getting it. I will be happly if someone can help.
I was also wondering if there is a better way to illustrate this data than using this method
data have;
infile cards expandtabs truncover;
input Sector & $40. Year Value;
cards;
Bank 1 2012 825
Bank 2 2012 810
Bank 3 2012 834
Bank 4 2012 797
Bank 5 2012 849
Bank 6 2012 838
Bank 7 2012 787
Bank 8 2012 792
Bank 9 2012 795
Bank 10 2012 834
Bank 11 2012 810
Bank 12 2012 807
Bank 13 2012 811
Bank 14 2012 804
Bank 15 2012 784
Bank 16 2012 818
Bank 17 2012 795
Bank 18 2012 823
Bank 19 2012 775
Bank 20 2012 757
Bank 21 2012 767
Bank 22 2012 772
Average sector 2012 795
Bank A 2012 774
Bank 1 2013 846
Bank 2 2013 829
Bank 3 2013 822
Bank 4 2013 808
Bank 5 2013 851
Bank 6 2013 841
Bank 7 2013 803
Bank 8 2013 800
Bank 9 2013 807
Bank 10 2013 837
Bank 11 2013 833
Bank 12 2013 820
Bank 13 2013 800
Bank 14 2013 827
Bank 15 2013 798
Bank 16 2013 811
Bank 17 2013 786
Bank 18 2013 829
Bank 19 2013 775
Bank 20 2013 771
Bank 21 2013 759
Bank 22 2013 761
Average sector 2013 800
Bank A 2013 785
Bank 1 2014 846
Bank 2 2014 845
Bank 3 2014 836
Bank 4 2014 825
Bank 5 2014 851
Bank 6 2014 825
Bank 7 2014 798
Bank 8 2014 815
Bank 9 2014 820
Bank 10 2014 826
Bank 11 2014 837
Bank 12 2014 807
Bank 13 2014 804
Bank 14 2014 829
Bank 15 2014 798
Bank 16 2014 824
Bank 17 2014 794
Bank 18 2014 811
Bank 19 2014 769
Bank 20 2014 789
Bank 21 2014 757
Bank 22 2014 755
Average sector 2014 804
Bank A 2014 805
Bank 1 2015 847
Bank 2 2015 845
Bank 3 2015 833
Bank 4 2015 789
Bank 5 2015 851
Bank 6 2015 840
Bank 7 2015 828
Bank 8 2015 821
Bank 9 2015 825
Bank 10 2015 842
Bank 11 2015 838
Bank 12 2015 815
Bank 13 2015 805
Bank 14 2015 829
Bank 15 2015 790
Bank 16 2015 815
Bank 17 2015 803
Bank 18 2015 831
Bank 19 2015 783
Bank 20 2015 804
Bank 21 2015 704
Bank 22 2015 758
Average sector 2015 812
Bank A 2015 833
Bank 1 2016 865
Bank 2 2016 853
Bank 3 2016 850
Bank 4 2016 820
Bank 5 2016 858
Bank 6 2016 845
Bank 7 2016 845
Bank 8 2016 835
Bank 9 2016 843
Bank 10 2016 839
Bank 11 2016 852
Bank 12 2016 845
Bank 13 2016 831
Bank 14 2016 837
Bank 15 2016 830
Bank 16 2016 848
Bank 17 2016 817
Bank 18 2016 837
Bank 19 2016 806
Bank 20 2016 813
Bank 21 2016 751
Bank 22 2016 791
Average sector 2016 830
Bank A 2016 839
Bank 1 2017 862
Bank 2 2017 848
Bank 3 2017 856
Bank 4 2017 823
Bank 5 2017 862
Bank 6 2017 848
Bank 7 2017 843
Bank 8 2017 834
Bank 9 2017 834
Bank 10 2017 853
Bank 11 2017 858
Bank 12 2017 837
Bank 13 2017 831
Bank 14 2017 836
Bank 15 2017 828
Bank 16 2017 837
Bank 17 2017 817
Bank 18 2017 850
Bank 19 2017 813
Bank 20 2017 822
Bank 21 2017 768
Bank 22 2017 792
Average sector 2017 832
Bank A 2017 843
Bank 1 2018 850
Bank 2 2018 846
Bank 3 2018 844
Bank 4 2018 832
Bank 5 2018 842
Bank 6 2018 829
Bank 7 2018 840
Bank 8 2018 832
Bank 9 2018 839
Bank 10 2018 838
Bank 11 2018 849
Bank 12 2018 848
Bank 13 2018 827
Bank 14 2018 823
Bank 15 2018 818
Bank 16 2018 833
Bank 17 2018 819
Bank 18 2018 827
Bank 19 2018 800
Bank 20 2018 809
Bank 21 2018 771
Bank 22 2018 787
Average sector 2018 824
Bank A 2018 827
Bank 1 2019 868
Bank 2 2019 872
Bank 3 2019 854
Bank 4 2019 853
Bank 5 2019 861
Bank 6 2019 853
Bank 7 2019 849
Bank 8 2019 849
Bank 9 2019 855
Bank 10 2019 868
Bank 11 2019 871
Bank 12 2019 846
Bank 13 2019 847
Bank 14 2019 854
Bank 15 2019 852
Bank 16 2019 851
Bank 17 2019 856
Bank 18 2019 866
Bank 19 2019 832
Bank 20 2019 852
Bank 21 2019 811
Bank 22 2019 826
Average sector 2019 846
Bank A 2019 836
;
proc sort data=have;by Sector year;run;
data have2;
merge have(where=(Sector not in ('Average sector' 'Bank A')))
have(where=(s in ('Average sector' 'Bank A')) rename=(Sector=s year=y value=v));
run;
proc sgplot data=have2 noautolegend;
/* Scatter plot for all banks except "Bank A" and "Sector Average" */
scatter x=Year y=Value / group=sector
markerattrs=(symbol=circlefilled size=10 color=gray) transparency=0.5;
/* Series plot for "Bank A" */
series x=y y=v / group=s
lineattrs=(thickness=2) markers markerattrs=(symbol=circlefilled size=6 ) curvelabel curvelabelloc=outside;
/* Titles and Labels */
title "Satisfaction with Face-to-Face User Support (2012-2019)";
xaxis label="Year" values=(2012 to 2019 by 1);
yaxis label="Satisfaction Value" values=(700 to 900 by 20) grid;
run;
But I prefer to use spaghetti plot:
https://blogs.sas.com/content/sastraining/2016/10/25/the-perfect-storm-for-state-fair-attendance/
https://blogs.sas.com/content/iml/2016/06/02/create-spaghetti-plots-in-sas.html
proc sgplot data=have2 noautolegend;
/* Scatter plot for all banks except "Bank A" and "Sector Average" */
series x=Year y=Value / group=sector lineattrs=(thickness=2 pattern=solid color=grey) transparency=0.8;
/* Series plot for "Bank A" */
series x=y y=v / group=s lineattrs=(thickness=2) curvelabel curvelabelloc=outside;
/* Titles and Labels */
title "Satisfaction with Face-to-Face User Support (2012-2019)";
xaxis label="Year" values=(2012 to 2019 by 1);
yaxis label="Satisfaction Value" values=(700 to 900 by 20) grid;
run;
unfortunately am not getting it
Explain what is wrong. Show us screen captures of these plots. Explain what you would like to see.
Please provide data as working SAS data step code (examples and instructions). Please do not provide data as copy and paste from Excel or similar. Please do not provide data as Excel files.
data have;
infile cards expandtabs truncover;
input Sector & $40. Year Value;
cards;
Bank 1 2012 825
Bank 2 2012 810
Bank 3 2012 834
Bank 4 2012 797
Bank 5 2012 849
Bank 6 2012 838
Bank 7 2012 787
Bank 8 2012 792
Bank 9 2012 795
Bank 10 2012 834
Bank 11 2012 810
Bank 12 2012 807
Bank 13 2012 811
Bank 14 2012 804
Bank 15 2012 784
Bank 16 2012 818
Bank 17 2012 795
Bank 18 2012 823
Bank 19 2012 775
Bank 20 2012 757
Bank 21 2012 767
Bank 22 2012 772
Average sector 2012 795
Bank A 2012 774
Bank 1 2013 846
Bank 2 2013 829
Bank 3 2013 822
Bank 4 2013 808
Bank 5 2013 851
Bank 6 2013 841
Bank 7 2013 803
Bank 8 2013 800
Bank 9 2013 807
Bank 10 2013 837
Bank 11 2013 833
Bank 12 2013 820
Bank 13 2013 800
Bank 14 2013 827
Bank 15 2013 798
Bank 16 2013 811
Bank 17 2013 786
Bank 18 2013 829
Bank 19 2013 775
Bank 20 2013 771
Bank 21 2013 759
Bank 22 2013 761
Average sector 2013 800
Bank A 2013 785
Bank 1 2014 846
Bank 2 2014 845
Bank 3 2014 836
Bank 4 2014 825
Bank 5 2014 851
Bank 6 2014 825
Bank 7 2014 798
Bank 8 2014 815
Bank 9 2014 820
Bank 10 2014 826
Bank 11 2014 837
Bank 12 2014 807
Bank 13 2014 804
Bank 14 2014 829
Bank 15 2014 798
Bank 16 2014 824
Bank 17 2014 794
Bank 18 2014 811
Bank 19 2014 769
Bank 20 2014 789
Bank 21 2014 757
Bank 22 2014 755
Average sector 2014 804
Bank A 2014 805
Bank 1 2015 847
Bank 2 2015 845
Bank 3 2015 833
Bank 4 2015 789
Bank 5 2015 851
Bank 6 2015 840
Bank 7 2015 828
Bank 8 2015 821
Bank 9 2015 825
Bank 10 2015 842
Bank 11 2015 838
Bank 12 2015 815
Bank 13 2015 805
Bank 14 2015 829
Bank 15 2015 790
Bank 16 2015 815
Bank 17 2015 803
Bank 18 2015 831
Bank 19 2015 783
Bank 20 2015 804
Bank 21 2015 704
Bank 22 2015 758
Average sector 2015 812
Bank A 2015 833
Bank 1 2016 865
Bank 2 2016 853
Bank 3 2016 850
Bank 4 2016 820
Bank 5 2016 858
Bank 6 2016 845
Bank 7 2016 845
Bank 8 2016 835
Bank 9 2016 843
Bank 10 2016 839
Bank 11 2016 852
Bank 12 2016 845
Bank 13 2016 831
Bank 14 2016 837
Bank 15 2016 830
Bank 16 2016 848
Bank 17 2016 817
Bank 18 2016 837
Bank 19 2016 806
Bank 20 2016 813
Bank 21 2016 751
Bank 22 2016 791
Average sector 2016 830
Bank A 2016 839
Bank 1 2017 862
Bank 2 2017 848
Bank 3 2017 856
Bank 4 2017 823
Bank 5 2017 862
Bank 6 2017 848
Bank 7 2017 843
Bank 8 2017 834
Bank 9 2017 834
Bank 10 2017 853
Bank 11 2017 858
Bank 12 2017 837
Bank 13 2017 831
Bank 14 2017 836
Bank 15 2017 828
Bank 16 2017 837
Bank 17 2017 817
Bank 18 2017 850
Bank 19 2017 813
Bank 20 2017 822
Bank 21 2017 768
Bank 22 2017 792
Average sector 2017 832
Bank A 2017 843
Bank 1 2018 850
Bank 2 2018 846
Bank 3 2018 844
Bank 4 2018 832
Bank 5 2018 842
Bank 6 2018 829
Bank 7 2018 840
Bank 8 2018 832
Bank 9 2018 839
Bank 10 2018 838
Bank 11 2018 849
Bank 12 2018 848
Bank 13 2018 827
Bank 14 2018 823
Bank 15 2018 818
Bank 16 2018 833
Bank 17 2018 819
Bank 18 2018 827
Bank 19 2018 800
Bank 20 2018 809
Bank 21 2018 771
Bank 22 2018 787
Average sector 2018 824
Bank A 2018 827
Bank 1 2019 868
Bank 2 2019 872
Bank 3 2019 854
Bank 4 2019 853
Bank 5 2019 861
Bank 6 2019 853
Bank 7 2019 849
Bank 8 2019 849
Bank 9 2019 855
Bank 10 2019 868
Bank 11 2019 871
Bank 12 2019 846
Bank 13 2019 847
Bank 14 2019 854
Bank 15 2019 852
Bank 16 2019 851
Bank 17 2019 856
Bank 18 2019 866
Bank 19 2019 832
Bank 20 2019 852
Bank 21 2019 811
Bank 22 2019 826
Average sector 2019 846
Bank A 2019 836
;
proc sort data=have;by Sector year;run;
data have2;
merge have(where=(Sector not in ('Average sector' 'Bank A')))
have(where=(s in ('Average sector' 'Bank A')) rename=(Sector=s year=y value=v));
run;
proc sgplot data=have2 noautolegend;
/* Scatter plot for all banks except "Bank A" and "Sector Average" */
scatter x=Year y=Value / group=sector
markerattrs=(symbol=circlefilled size=10 color=gray) transparency=0.5;
/* Series plot for "Bank A" */
series x=y y=v / group=s
lineattrs=(thickness=2) markers markerattrs=(symbol=circlefilled size=6 ) curvelabel curvelabelloc=outside;
/* Titles and Labels */
title "Satisfaction with Face-to-Face User Support (2012-2019)";
xaxis label="Year" values=(2012 to 2019 by 1);
yaxis label="Satisfaction Value" values=(700 to 900 by 20) grid;
run;
But I prefer to use spaghetti plot:
https://blogs.sas.com/content/sastraining/2016/10/25/the-perfect-storm-for-state-fair-attendance/
https://blogs.sas.com/content/iml/2016/06/02/create-spaghetti-plots-in-sas.html
proc sgplot data=have2 noautolegend;
/* Scatter plot for all banks except "Bank A" and "Sector Average" */
series x=Year y=Value / group=sector lineattrs=(thickness=2 pattern=solid color=grey) transparency=0.8;
/* Series plot for "Bank A" */
series x=y y=v / group=s lineattrs=(thickness=2) curvelabel curvelabelloc=outside;
/* Titles and Labels */
title "Satisfaction with Face-to-Face User Support (2012-2019)";
xaxis label="Year" values=(2012 to 2019 by 1);
yaxis label="Satisfaction Value" values=(700 to 900 by 20) grid;
run;
It's finally time to hack! Remember to visit the SAS Hacker's Hub regularly for news and updates.
Learn how use the CAT functions in SAS to join values from multiple variables into a single value.
Find more tutorials on the SAS Users YouTube channel.
Ready to level-up your skills? Choose your own adventure.