BookmarkSubscribeRSS Feed
🔒 This topic is solved and locked. Need further help from the community? Please sign in and ask a new question.
Huss
Fluorite | Level 6

Hi Jeff,

 

The code is working properly and the matrix looks good. Thank you so much for your help and time. However, I noticed when using big set of data the , the map is so busy. Is there possibility to use  * for P <0.05 and  and ** for P <0.001 ,  *** for P <0.0001, and nothing when P > 0.05? That might make it more  clear.

 

Kind Regards

 

 

 

 

JeffMeyers
Barite | Level 11

I did this by making a format for the p-values and applying it.  I added an ENTRYFOOTNOTE for a footnote clarifying the symbols, and you can change the text to be what you'd like.

 

data work.Almtarfi_2;
input Cult Biomass_BRC Biomass_RB yield_BRC Yield_RB Height_BRC Heigh_RB;
CARDS;
1930 62.125 75.255 2563.16 2196.06 123.075 142.8
1933 60.62 77.91 2396.49 1965.79 106.233 124.325
1935 51.275 77.2 2317.14 2490.56 114.75 137.25
1940 63.31 73.025 2738.19 2888.38 142.85 169.5
;
run;
proc format;

    value pvaldots
        0-<0.0001 = '***'
        0.0001-<0.001 = '**'
        0.001-<0.05 = '*'
        0.05-high =' '
        other = ' ';
run;
        * for P <0.05 and  and ** for P <0.001 ,  *** for P <0.0001, and nothing when P > 0.05;
/*Code below by Chris Hemedinger, found on the SAS blogs*/
ods trace off;
/* Prepare the correlations coeff matrix: Pearson's r method */
%macro prepCorrData(in=,out=);
/* Run corr matrix for input data, all numeric vars */
ods select none; ods noresults;
ods output PearsonCorr=blah;
proc corr data=&in. pearson 
outp=work._tmpCorr
vardef=df
;
run;
ods results;
ods select all;
proc sql noprint;
    select variable into :vlist separated by '|' from blah;
quit;
/* prep data for heat map */
data &out.;
keep x y r p;
format p pvaldots.;
set blah (rename=(variable=_name_));
*set work._tmpCorr(where=(_TYPE_="CORR"));
array v{*} %do i = 1 %to %sysfunc(countw(%superq(vlist),|)); %scan(%superq(vlist),&i,|) %end;;
array pval{*} %do i = 1 %to %sysfunc(countw(%superq(vlist),|)); p%scan(%superq(vlist),&i,|) %end;;
x = _NAME_;
do i = dim(v) to 1 by -1;
y = vname(v(i));
r = v(i);
p = pval(i);

/* creates a lower triangular matrix */
if (i<_n_) then do;
r=.;p=.;
end;
output;
end;
run;

proc datasets lib=work nolist nowarn;
delete _tmpcorr;
quit;
%mend;
/* Create a heat map implementation of a correlation matrix */
ods path work.mystore(update) sashelp.tmplmst(read);

proc template;
define statgraph corrHeatmap;
dynamic _Title;
begingraph;
entrytitle _Title;
entryfootnote halign=left '*: P <0.05;**: P <0.001;***: P <0.0001;Blank: P > 0.05' / textattrs=(size=10pt);
rangeattrmap name='map';
/* select a series of colors that represent a "diverging" */
/* range of values: stronger on the ends, weaker in middle */
/* Get ideas from http://colorbrewer.org */
range -1 - 1 / rangecolormodel=(cxD8B365 cxF5F5F5 cx5AB4AC);
endrangeattrmap;
rangeattrvar var=r attrvar=r attrmap='map';
layout overlay /
xaxisopts=(display=(line ticks tickvalues))
yaxisopts=(display=(line ticks tickvalues));
heatmapparm x = x y = y colorresponse = r /
xbinaxis=false ybinaxis=false
name = "heatmap" display=all;
textplot x=x y=y text=p / textattrs=(size=14pt);
continuouslegend "heatmap" /
orient = vertical location = outside title="Pearson Correlation";
endlayout;
endgraph;
end;
run;

/* Build the graphs */
ods graphics /height=600 width=800 imagemap;
%prepCorrData(in=work.Almtarfi_2,out=work.Almtarfi_r);
proc sgrender data=work.Almtarfi_r template=corrHeatmap;
dynamic _title="Correlation matrix for all variables";
run;

SGRender.png

Huss
Fluorite | Level 6

Hi Jeff,

 

Thanks a lot for again for you  help . When adding the proc corr numeric matrix code , I found that it is only adding star instead of  two for significant . It is considering for example adding two star only when P- value <0.001 and one if it is equal to 0.001 which is not appropriate. If you look at the p-value in numeric  matrix and the stars in the heat map , you see it is not the same significant., for example Height- RB vs Height- BRC. I tested with other data and it is the same. Can you please , help with fixing the ENTRYFOOTNOTE , please

 

 

 


data work.Almtarfi_2;
input Cult Biomass_BRC Biomass_RB yield_BRC Yield_RB Height_BRC Heigh_RB;
CARDS;
1930 62.125 75.255 2563.16 2196.06 123.075 142.8
1933 60.62 77.91 2396.49 1965.79 106.233 124.325
1935 51.275 77.2 2317.14 2490.56 114.75 137.25
1940 63.31 73.025 2738.19 2888.38 142.85 169.5
;
run;
proc format;

value pvaldots
0-<0.0001 = '***'
0.0001-<0.001 = '**'
0.001-<0.05 = '*'
0.05-high =' '
other = ' ';

run;
* for P <0.05 and and ** for P <0.001 , *** for P <0.0001, and nothing when P > 0.05;
/*Code below by Chris Hemedinger, found on the SAS blogs*/
ods trace off;
/* Prepare the correlations coeff matrix: Pearson's r method */
%macro prepCorrData(in=,out=);
/* Run corr matrix for input data, all numeric vars */
ods select none; ods noresults;
ods output PearsonCorr=blah;
proc corr data=&in. pearson
outp=work._tmpCorr
vardef=df;
run;
ods results;
ods select all;
proc sql noprint;
select variable into :vlist separated by '|' from blah;
quit;

PROC CORR DATA=work.Almtarfi_2;
VAR Cult Biomass_BRC Biomass_RB yield_BRC Yield_RB Height_BRC Heigh_RB;
WITH Cult Biomass_BRC Biomass_RB yield_BRC Yield_RB Height_BRC Heigh_RB;
RUN;
/* prep data for heat map */
data &out.;
keep x y r p;
format p pvaldots.;
set blah (rename=(variable=_name_));
*set work._tmpCorr(where=(_TYPE_="CORR"));
array v{*} %do i = 1 %to %sysfunc(countw(%superq(vlist),|)); %scan(%superq(vlist),&i,|) %end;;
array pval{*} %do i = 1 %to %sysfunc(countw(%superq(vlist),|)); p%scan(%superq(vlist),&i,|) %end;;
x = _NAME_;
do i = dim(v) to 1 by -1;
y = vname(v(i));
r = v(i);
p = pval(i);

/* creates a lower triangular matrix */
if (i<_n_) then do;
r=.;p=.;
end;
output;
end;
run;

proc datasets lib=work nolist nowarn;
delete _tmpcorr;
quit;
%mend;
/* Create a heat map implementation of a correlation matrix */
ods path work.mystore(update) sashelp.tmplmst(read);

proc template;
define statgraph corrHeatmap;
dynamic _Title;
begingraph;
entrytitle _Title;
entryfootnote halign=left '*: P <0.05;**: P <0.001;***: P <0.0001;Blank: P > 0.05' / textattrs=(size=10pt);
rangeattrmap name='map';
/* select a series of colors that represent a "diverging" */
/* range of values: stronger on the ends, weaker in middle */
/* Get ideas from http://colorbrewer.org */
range -1 - 1 / rangecolormodel=(cxD8B365 cxF5F5F5 cx5AB4AC);
endrangeattrmap;
rangeattrvar var=r attrvar=r attrmap='map';
layout overlay /
xaxisopts=(display=(line ticks tickvalues))
yaxisopts=(display=(line ticks tickvalues));
heatmapparm x = x y = y colorresponse = r /
xbinaxis=false ybinaxis=false
name = "heatmap" display=all;
textplot x=x y=y text=p / textattrs=(size=14pt);
continuouslegend "heatmap" /
orient = vertical location = outside title="Pearson Correlation";
endlayout;
endgraph;
end;
run;

/* Build the graphs */
ods graphics /height=600 width=800 imagemap;
%prepCorrData(in=work.Almtarfi_2,out=work.Almtarfi_r);
proc sgrender data=work.Almtarfi_r template=corrHeatmap;
dynamic _title="Correlation matrix for all variables";
run;

Huss
Fluorite | Level 6

Hi everyone,

I am looking for your help , please to  get A Principle Component Analysis  SAS code for the data below with output graphs including grouping and highlighting the variables in different colors. I would really appreciate it.

 

Thanks

 

YEARBIOBRC BioRBYBRCYiRBHBRCHRBNBRCNRBCBRC
193641.150.751787.812079.78102.665153.5030.928740.9364616.945
193834.244.7796.66721.5393.833138.8330.809460.9846913.9577
193959.740.41502.331362.49102.915148.5831.252950.6525324.6763
19424057.71999.361947.99112.833163.0850.888341.0700116.7522
194732.5544.22141.841872.04101.668135.0830.698180.8717413.5091
194842.8547.152059.132085.76100.998155.3350.983110.9776517.6518
195143.947.452544.662093.5899.833139.4151.011270.989118.2257
195544.851.22082.271614.91113140.4151.078221.0477418.3954
196632.436.22431.771983.61141570.87770.8351313.4189
196948.0542.052464.152611.9106.083132.1651.134810.7455419.8831

 

 

Hussien

 

 

iatoloye
Fluorite | Level 6

This is very helpful.

 

How can I increase the font size of the texts on the x- and y-axis?

 

Thanks

iatoloye
Fluorite | Level 6

This is very useful. I need help on how to increase the font size of the axes labels. I used labelattrs but it did not work.

 

Any help?

Reeza
Super User
And which version of SAS do you have?
Such as 9.4TS1M5?
Rick_SAS
SAS Super FREQ

the article "Create heat maps with PROC SGPLOT" provides an example of overlaying text on a heatmap by using the HEATMAP and TEXt statements in PROC SGPLOT. Although the example in the article is a frequency table and not a correlation matrix, the idea is the same.

SAS Innovate 2025: Save the Date

 SAS Innovate 2025 is scheduled for May 6-9 in Orlando, FL. Sign up to be first to learn about the agenda and registration!

Save the date!

How to Concatenate Values

Learn how use the CAT functions in SAS to join values from multiple variables into a single value.

Find more tutorials on the SAS Users YouTube channel.

SAS Training: Just a Click Away

 Ready to level-up your skills? Choose your own adventure.

Browse our catalog!

Discussion stats
  • 22 replies
  • 5460 views
  • 8 likes
  • 5 in conversation