sure, thanks
here is the code I used (i'm sure its amateur) - the event refers to the event that the customer would be likely to consider company x. the data I have actually ranks that likelihood from 1 to 10 so I had to bucket it 1-5 vs. 6-10 which is useless, of course. I need another way to represent the data more fully. For my variables, "twentyfour" refers to the degree to which each respondent associates company x with that characteristic (the company has 24-hour service) - 1 being the weakest and 10 the strongest so, again, this method probably isn't best for that...
rsubmit edwkdp;
proc logistic data=kelly.mark1 outest=kelly.betas covout;
CLASS twentyfour (ref= '1')/PARAM=ref;
CLASS lowerrate (ref= '1')/PARAM=ref;
CLASS service (ref= '1')/PARAM=ref;
class reliable (ref= '1')/PARAM=ref;
class time (ref= '1')/PARAM=ref;
class value (ref= '1')/PARAM=ref;
model likelihood2 (event='1') = twentyfour lowerrate service reliable time value
/ selection=stepwise
slentry = .05
slstay =.02
details
lackfit;
output out= kellypred p=phat lower=lcl upper=ucl
predprob = (individual crossvalidate);
run;
endrsubmit;
** I also ran a contigency table (creating dummy variables for each attribute and rating i.e. twentyfour1, twentyfour2, etc. and running them against likelihood1, likelihood2, etc) - I got contingency coefficients for that and those seem to be useful - but, I am open to other ideas. THANKS!!