Hello all,
I am testing a model using PROC MIXED, with one categorical and one continuous predictor.
See syntax below. I plot the results using PLM, and I am interested in testing whether the slope decreases at one level of IV but not at the other. One possibility is to use LSMEANS, and showing that at higher levels of the continuous IV (PROGRESS), that is at +1SD, there is a significant differences between the two levels of IV.
But I wonder whether there is a more sophisticated test, showing that for one level of IV there is an asymptotic shape while for the other there is a inverted u-shape. The quadratic term (progress*progress) is significant for both levels.
Thank you for any suggestion you may have!
Eman
proc mixed data=testing ;
class id IV ;
model DV= IV|progress|progress ;
random int / subject=id;
lsmeans IV /at progress = -1 tdiff;
lsmeans IV /at progress = 0 tdiff;
lsmeans IV /at progress = 1 tdiff;
store cognizione;
proc plm source=cognizione noinfo noclprint;
effectplot slicefit (x=progress sliceby=IV ) / clm;
run;
Recode IV. Assuming the data you provided is in a data set named A, then this fits the model and compares the slopes from 0 to 0.25.
data b; set a;
iv2=iv; if iv=-1 then iv2=2;
run;
proc glimmix data=b;
class id iv2;
effect spl=spline(progress/naturalcubic);
model DV = iv2*spl / noint s;
random int / subject=id;
estimate 'IV2=1 slope from 0 to .25' iv2*spl [4,1 .25] [-4,1 0] ;
estimate 'IV2=2 slope from 0 to .25' iv2*spl [4,2 .25] [-4,2 0];
estimate 'slope diff IV=1 - IV=2' iv2*spl [4,1 .25] [-4,1 0] [-4,2 .25] [4,2 0];
store mod;
run;
proc plm source=mod;
effectplot slicefit(x=progress sliceby=iv2);
run;
> But I wonder whether there is a more sophisticated test, showing that for one level of IV there is an asymptotic shape while for the other there is a inverted u-shape. The quadratic term (progress*progress) is significant for both levels.
Perhaps I am misunderstanding the question. It seems to me that if the quadratic term is significant for both levels, then the shape of the model is U-shaped for both models. (An "Inverted U" if the relevant parameter estimate is negative.) I don't see how you can claim an "asymptotic shape" for either level of IV. They are both U-shaped if all coefficient estimates are nonzero, although perhaps the model for one level is monotonic when restricted to the observed range of the Progress variable?
hello Rick,
I did not express myself very clearly.
Although I am interested in the relationship overall, for theoretical reasons, it is important to test what happens in the relation between PROGRESS and DV, for levels of progress greater than 0. And, more specifically, whether this is different for the two levels of IV. When I do that (see syntax below) I find that PROGRESS is a negative predictor of DV only IV=1 (in red in the figure); it is not for IV=-1 (blue). In other words, for IV=-1, the slope more or less plateau after PROGRESS=0, while for IV=1 it shows a significant decrease. I attach the SOLUTION results below.
I can present these results, which indeed shows that the relationship is monotonic at one level of IV but not at the other. But I wondered whether there is any other analysis that I could run.
data testing2;
set testing;
where progress > 0;
proc mixed data=testing2 ;
class id IV ;
model DV= IV IV*progress /solution;
random int / subject=id;
Many researchers recommend that, in general, you should include main effects in the model if you are going to examine interaction effects. (Unless there is a compelling theoretical reason not to.) Having the main effects can make interpretation of the model easier. Is there a reason that the main effect Progress is not in the model?
Yes, I typically include it. The syntax below results in a significant interaction. I had then used the syntax without PROGRESS main effect to quickly see the effect of progress for the two levels of IV, separately, using / SOLUTION.
E
proc mixed;
class id IV ;
model DV= IV|progress ;
random int / subject=id;
Now I am more confused. Your first model has a quadratic term for PROGRESS. Your second mode (for which you show the parameter estimates) is linear in PROGRESS. Looking at the graph you provided, those equations do not correspond to a model of the form DV = a + c*PROGRESS^2 because the curves are not symmetric about the vertical axis. As shown, each curve contains a linear term.
It sounds like you want to comment on the derivative of the model (averaged over the random effects) for the two levels of IV. So do it: Plug in the parameter estimates to get the quadratic equations for DV as a function of PROGRESS, for each level of IV. Then take the derivative and assess the values of PROGRESS for which the derivative is negative.
Let's say for IV=-1, the equation is of the form
DV = a + b*P + c*P^2, where I am using P for the PROGRESS variable.
Then the derivative is y = b + 2*c*P.
You want to know where the derivative is negative. Your graph shows that c < 0, so (solving for P)
P > -b/(2c)
is the range for which the derivative is negative. When you plug in the actual values for your model, you will be able to conclude something like
"When IV=-1, the derivative is negative when PROGRESS > [value]". From your discussion, it sounds like you expect value will be close to 0.
Do the same thing when IV=1 to conclude something like, "When IV=1, the derivative doesn't become negative until Progress is greater than <different value>, which is greater than the value when IV=-1."
Hello Rick --
sorry, I had not seen your reply earlier.
yes, you interpreted my confusing post correctly.
I understand what you suggest; now I have to figure out how to actually do it -- will report back.
Eman
>I am interested in testing whether the slope decreases at one level of IV but not at the other.
> ... for one level of IV there is an asymptotic shape while for the other there is a
> inverted u-shape.
If you want to allow the model to show the shape of the curves across PROGRESS and suspect that they might have quite different shapes, then you probably should not force the curves to both have a quadratic shape - particularly if you think one curve plateaus which is not something a polynomial form of model will accommodate. You could instead use flexible splines to better follow the shape of the data. You can use the EFFECT statement to define a spline over PROGRESS and then write the model to allow each IV level to have its own spline. PROC MIXED doesn't support the EFFECT statement, but you can fit the model using PROC GLIMMIX instead. This is done in the following statements.
Then, if comparing the slopes of the lines is the goal, you need to pick one or more specific values of PROGRESS at which to estimate and compare the slopes. This most easily done using the ESTIMATE statement and non-positional syntax. The first two ESTIMATE statements below estimate the slope of each curve near PROGRESS=1 by computing the change in DV mean from PROGRESS=1 to 1.25. Since the difference is computed over a range of only 0.25, each difference is multiplied by 4 to give an approximate slope. The last ESTIMATE statement then estimates and tests the difference of the two slopes.
proc glimmix data=testing;
class id IV;
effect spl=spline(progress/naturalcubic);
model DV = IV*spl / noint s;
random int / subject=id;
estimate 'IV=-1 slope from 1 to 1.25' IV*spl [4,-1 1.25] [-4,-1 1] ;
estimate 'IV=1 slope from 1 to 1.25' IV*spl [4,1 1.25] [-4,1 1];
estimate 'slope diff IV=-1 - IV=1' IV*spl [4,-1 1.25] [-4,-1 1] [-4,-1 1.25] [4,-1 1];
run;
Another solution would be to estimate and compare the derivative of DV with respect to PROGRESS at a particular value of PROGRESS on each curve. Recall that the derivative is the slope of a line drawn tangent to the curve at the selected point. This removes the approximate estimation as above over some range of PROGRESS using the familiar rise/run computation of slope. This could be done using the MARGINS macro, but that macro would require you to switch from a random effects model to a Generalized Estimating Equations (GEE) model. It also doesn't allow for splines in the model, so you could instead use a much higher order polynomial model which might be adequate. See this note where the marginal effect is discussed (in the context of a binary response model).
Thank you Dave!
I had to drop IV from the CLASS statement to make it work -- se below.
I get the estimates for both levels of IV, but not the comparison between the two estimates. I guess it's just a typo somewhere that needs to be resolved?
proc glimmix data=testing;
class id IV;
effect spl=spline(progress/naturalcubic);
model DV = IV*spl / noint s;
random int / subject=id;
estimate 'IV=-1 slope from 1 to 1.25' IV*spl [4,-1 1.25] [-4,-1 1] ;
estimate 'IV=1 slope from 1 to 1.25' IV*spl [4,1 1.25] [-4,1 1];
estimate 'slope diff IV=-1 - IV=1' IV*spl [4,-1 1.25] [-4,-1 1] [-4,-1 1.25] [4,-1 1];
run;
No, IV was intended to be a CLASS variable as it essentially provides the separate spline curves for its two levels.
Then it does not work.
I get the error message below.
I also attach the data, in case you want to give it a try -- note that I dropped the random factor (ID); it is not necessary.
id DV progress IV
1 -1.25 -1.566479463 -1
1 -0.08 -1.218372915 -1
1 -1.76 -0.870266368 -1
1 -0.39 -0.522159821 -1
1 1.05 -0.174053274 -1
1 1.46 0.174053274 -1
1 0.88 0.522159821 -1
1 0.02 0.870266368 -1
1 -0.25 1.218372915 -1
1 0.33 1.566479463 -1
2 -0.72 -1.566479463 -1
2 -1.21 -1.218372915 -1
2 -0.48 -0.870266368 -1
2 1.88 -0.522159821 -1
2 0.08 -0.174053274 -1
2 -0.18 0.174053274 -1
2 0.27 0.522159821 -1
2 1.44 0.870266368 -1
2 -0.06 1.218372915 -1
2 -1.02 1.566479463 -1
3 -2.58 -1.566479463 -1
3 0.12 -1.218372915 -1
3 0.34 -0.870266368 -1
3 1.16 -0.522159821 -1
3 0.44 -0.174053274 -1
3 0.6 0.174053274 -1
3 -0.23 0.522159821 -1
3 0.14 0.870266368 -1
3 -0.35 1.218372915 -1
3 0.36 1.566479463 -1
4 -1.07 -1.566479463 1
4 0.48 -1.218372915 1
4 1.61 -0.870266368 1
4 -1.21 -0.522159821 1
4 0.72 -0.174053274 1
4 -0.55 0.174053274 1
4 -0.97 0.522159821 1
4 0.63 0.870266368 1
4 1 1.218372915 1
4 -0.64 1.566479463 1
5 -0.23 -1.566479463 -1
5 -0.39 -1.218372915 -1
5 0.28 -0.870266368 -1
5 0.18 -0.522159821 -1
5 -0.29 -0.174053274 -1
5 -0.7 0.174053274 -1
5 -0.88 0.522159821 -1
5 2.65 0.870266368 -1
5 -0.06 1.218372915 -1
5 -0.56 1.566479463 -1
6 -0.97 -1.566479463 -1
6 -0.42 -1.218372915 -1
6 -0.49 -0.870266368 -1
6 0.16 -0.522159821 -1
6 0.89 -0.174053274 -1
6 -0.41 0.174053274 -1
6 -0.03 0.522159821 -1
6 -0.63 0.870266368 -1
6 -0.54 1.218372915 -1
6 2.44 1.566479463 -1
7 1.17 -1.566479463 1
7 0.14 -1.218372915 1
7 -0.09 -0.870266368 1
7 -0.69 -0.522159821 1
7 -0.78 -0.174053274 1
7 0.64 0.174053274 1
7 0.46 0.522159821 1
7 0.46 0.870266368 1
7 0.9 1.218372915 1
7 -2.2 1.566479463 1
8 0.79 -1.566479463 1
8 0.42 -1.218372915 1
8 -1.73 -0.870266368 1
8 0.71 -0.522159821 1
8 1.34 -0.174053274 1
8 0.08 0.174053274 1
8 0.18 0.522159821 1
8 -0.81 0.870266368 1
8 0.45 1.218372915 1
8 -1.42 1.566479463 1
9 1.41 -1.566479463 1
9 -1.35 -1.218372915 1
9 -0.24 -0.870266368 1
9 -1.13 -0.522159821 1
9 0.11 -0.174053274 1
9 1.21 0.174053274 1
9 0.47 0.522159821 1
9 -0.42 0.870266368 1
9 0.97 1.218372915 1
9 -1.02 1.566479463 1
10 0.26 -1.566479463 1
10 -0.6 -1.218372915 1
10 -1.38 -0.870266368 1
10 0.09 -0.522159821 1
10 0.32 -0.174053274 1
10 -0.57 0.174053274 1
10 2.08 0.522159821 1
10 0.15 0.870266368 1
10 0.77 1.218372915 1
10 -1.12 1.566479463 1
11 0.23 -1.566479463 -1
11 0.61 -1.218372915 -1
11 0.27 -0.870266368 -1
11 0.61 -0.522159821 -1
11 0.76 -0.174053274 -1
11 1.14 0.174053274 -1
11 0.34 0.522159821 -1
11 -1.33 0.870266368 -1
11 -0.65 1.218372915 -1
11 -1.98 1.566479463 -1
12 -1.74 -1.566479463 1
12 0.5 -1.218372915 1
12 -0.31 -0.870266368 1
12 0.89 -0.522159821 1
12 -0.68 -0.174053274 1
12 0.92 0.174053274 1
12 -0.31 0.522159821 1
12 0.08 0.870266368 1
12 1.59 1.218372915 1
12 -0.93 1.566479463 1
13 -1.45 -1.566479463 -1
13 -0.31 -1.218372915 -1
13 -0.69 -0.870266368 -1
13 -0.78 -0.522159821 -1
13 -0.5 -0.174053274 -1
13 0.3 0.174053274 -1
13 0.16 0.522159821 -1
13 0.47 0.870266368 -1
13 0.63 1.218372915 -1
13 2.17 1.566479463 -1
14 1.8 -1.566479463 -1
14 -0.62 -1.218372915 -1
14 -0.53 -0.870266368 -1
14 -0.87 -0.522159821 -1
14 -0.48 -0.174053274 -1
14 -0.45 0.174053274 -1
14 -0.06 0.522159821 -1
14 -1.09 0.870266368 -1
14 0.97 1.218372915 -1
14 1.33 1.566479463 -1
15 -0.41 -1.566479463 1
15 0.23 -1.218372915 1
15 1.11 -0.870266368 1
15 0.24 -0.522159821 1
15 -1.7 -0.174053274 1
15 -0.37 0.174053274 1
15 0.05 0.522159821 1
15 1.11 0.870266368 1
15 1.14 1.218372915 1
15 -1.39 1.566479463 1
16 -1.07 -1.566479463 -1
16 -0.52 -1.218372915 -1
16 1.4 -0.870266368 -1
16 -0.46 -0.522159821 -1
16 -1.6 -0.174053274 -1
16 0.83 0.174053274 -1
16 -0.71 0.522159821 -1
16 0.98 0.870266368 -1
16 0.45 1.218372915 -1
16 0.7 1.566479463 -1
17 0.57 -1.566479463 1
17 1.39 -1.218372915 1
17 0.14 -0.870266368 1
17 -1.55 -0.522159821 1
17 -1.68 -0.174053274 1
17 -0.1 0.174053274 1
17 -0.41 0.522159821 1
17 1.05 0.870266368 1
17 0.22 1.218372915 1
17 0.38 1.566479463 1
18 -1.57 -1.566479463 -1
18 -0.74 -1.218372915 -1
18 0.11 -0.870266368 -1
18 0.71 -0.522159821 -1
18 1.22 -0.174053274 -1
18 1.59 0.174053274 -1
18 -1 0.522159821 -1
18 -0.11 0.870266368 -1
18 -0.57 1.218372915 -1
18 0.34 1.566479463 -1
19 -1.63 -1.566479463 -1
19 0.53 -1.218372915 -1
19 -0.01 -0.870266368 -1
19 -1.33 -0.522159821 -1
19 -0.13 -0.174053274 -1
19 0.38 0.174053274 -1
19 0.47 0.522159821 -1
19 1.94 0.870266368 -1
19 0.17 1.218372915 -1
19 -0.37 1.566479463 -1
20 -0.96 -1.566479463 1
20 -0.69 -1.218372915 1
20 -1.1 -0.870266368 1
20 -0.64 -0.522159821 1
20 0.35 -0.174053274 1
20 0.9 0.174053274 1
20 1.26 0.522159821 1
20 1.35 0.870266368 1
20 -1.1 1.218372915 1
20 0.63 1.566479463 1
21 -1.76 -1.566479463 1
21 -0.28 -1.218372915 1
21 -0.33 -0.870266368 1
21 0.85 -0.522159821 1
21 0.4 -0.174053274 1
21 -0.01 0.174053274 1
21 -0.52 0.522159821 1
21 1.61 0.870266368 1
21 1.01 1.218372915 1
21 -0.98 1.566479463 1
22 1.14 -1.566479463 -1
22 1.75 -1.218372915 -1
22 -1.02 -0.870266368 -1
22 0.25 -0.522159821 -1
22 -0.35 -0.174053274 -1
22 -1.48 0.174053274 -1
22 -0.24 0.522159821 -1
22 -0.87 0.870266368 -1
22 0.6 1.218372915 -1
22 0.22 1.566479463 -1
23 1.36 -1.566479463 1
23 -0.05 -1.218372915 1
23 -0.23 -0.870266368 1
23 0.38 -0.522159821 1
23 0.07 -0.174053274 1
23 1.8 0.174053274 1
23 -0.22 0.522159821 1
23 -0.53 0.870266368 1
23 -1.46 1.218372915 1
23 -1.12 1.566479463 1
24 -1.19 -1.566479463 -1
24 -1.14 -1.218372915 -1
24 -1.45 -0.870266368 -1
24 -0.39 -0.522159821 -1
24 0.75 -0.174053274 -1
24 0.83 0.174053274 -1
24 0.77 0.522159821 -1
24 -0.2 0.870266368 -1
24 1.21 1.218372915 -1
24 0.81 1.566479463 -1
25 -1.07 -1.566479463 1
25 1.69 -1.218372915 1
25 -0.6 -0.870266368 1
25 -0.07 -0.522159821 1
25 0.97 -0.174053274 1
25 0.78 0.174053274 1
25 0.73 0.522159821 1
25 -0.63 0.870266368 1
25 -1.42 1.218372915 1
25 -0.38 1.566479463 1
26 0.39 -1.566479463 1
26 -0.07 -1.218372915 1
26 -0.09 -0.870266368 1
26 0.2 -0.522159821 1
26 0.74 -0.174053274 1
26 -1.43 0.174053274 1
26 -0.09 0.522159821 1
26 2.14 0.870266368 1
26 -0.9 1.218372915 1
26 -0.9 1.566479463 1
27 -1.17 -1.566479463 1
27 -1.04 -1.218372915 1
27 -0.9 -0.870266368 1
27 0.04 -0.522159821 1
27 0.46 -0.174053274 1
27 0.88 0.174053274 1
27 -0.55 0.522159821 1
27 1.34 0.870266368 1
27 -0.58 1.218372915 1
27 1.52 1.566479463 1
28 -1.12 -1.566479463 1
28 1.11 -1.218372915 1
28 0.69 -0.870266368 1
28 -0.52 -0.522159821 1
28 1.31 -0.174053274 1
28 0.21 0.174053274 1
28 1.09 0.522159821 1
28 -1.01 0.870266368 1
28 -1.23 1.218372915 1
28 -0.52 1.566479463 1
29 -1.18 -1.566479463 1
29 1.48 -1.218372915 1
29 -0.28 -0.870266368 1
29 0.91 -0.522159821 1
29 -1.18 -0.174053274 1
29 1.26 0.174053274 1
29 0.45 0.522159821 1
29 -0.21 0.870266368 1
29 -0.1 1.218372915 1
29 -1.13 1.566479463 1
30 -1.97 -1.566479463 1
30 0.02 -1.218372915 1
30 -0.5 -0.870266368 1
30 -0.05 -0.522159821 1
30 1.47 -0.174053274 1
30 0.36 0.174053274 1
30 0.43 0.522159821 1
30 -0.74 0.870266368 1
30 1.31 1.218372915 1
30 -0.31 1.566479463 1
31 -1.25 -1.566479463 1
31 -0.62 -1.218372915 1
31 0.48 -0.870266368 1
31 -0.08 -0.522159821 1
31 1.33 -0.174053274 1
31 0.57 0.174053274 1
31 0.59 0.522159821 1
31 -1.86 0.870266368 1
31 0.95 1.218372915 1
31 -0.11 1.566479463 1
32 0.39 -1.566479463 1
32 1.26 -1.218372915 1
32 -0.81 -0.870266368 1
32 -1.49 -0.522159821 1
32 0.25 -0.174053274 1
32 -0.06 0.174053274 1
32 -0.69 0.522159821 1
32 1.87 0.870266368 1
32 -0.15 1.218372915 1
32 -0.55 1.566479463 1
33 0.18 -1.566479463 1
33 -0.8 -1.218372915 1
33 -0.35 -0.870266368 1
33 -0.62 -0.522159821 1
33 -1 -0.174053274 1
33 1.28 0.174053274 1
33 1.24 0.522159821 1
33 -0.62 0.870266368 1
33 -0.89 1.218372915 1
33 1.57 1.566479463 1
34 -1.47 -1.566479463 -1
34 -1.78 -1.218372915 -1
34 -0.28 -0.870266368 -1
34 0.6 -0.522159821 -1
34 0.6 -0.174053274 -1
34 -0.17 0.174053274 -1
34 1.45 0.522159821 -1
34 0.49 0.870266368 -1
34 0.68 1.218372915 -1
34 -0.13 1.566479463 -1
35 -0.17 -1.566479463 1
35 -0.14 -1.218372915 1
35 -0.71 -0.870266368 1
35 -0.79 -0.522159821 1
35 -1.19 -0.174053274 1
35 1.92 0.174053274 1
35 -0.14 0.522159821 1
35 0.31 0.870266368 1
35 1.5 1.218372915 1
35 -0.59 1.566479463 1
36 -0.57 -1.566479463 -1
36 -1.18 -1.218372915 -1
36 -0.42 -0.870266368 -1
36 -0.57 -0.522159821 -1
36 -1.11 -0.174053274 -1
36 0.67 0.174053274 -1
36 0.98 0.522159821 -1
36 0.03 0.870266368 -1
36 2.03 1.218372915 -1
36 0.14 1.566479463 -1
37 -1.73 -1.566479463 1
37 0.55 -1.218372915 1
37 0.55 -0.870266368 1
37 1.54 -0.522159821 1
37 0.19 -0.174053274 1
37 0.67 0.174053274 1
37 -0.56 0.522159821 1
37 -0.41 0.870266368 1
37 0.55 1.218372915 1
37 -1.34 1.566479463 1
38 -1.07 -1.566479463 -1
38 -1.05 -1.218372915 -1
38 -1.33 -0.870266368 -1
38 -0.5 -0.522159821 -1
38 1.76 -0.174053274 -1
38 0.45 0.174053274 -1
38 0 0.522159821 -1
38 0.06 0.870266368 -1
38 0.68 1.218372915 -1
38 0.98 1.566479463 -1
39 -1.5 -1.566479463 -1
39 1.6 -1.218372915 -1
39 -0.08 -0.870266368 -1
39 0.94 -0.522159821 -1
39 -0.84 -0.174053274 -1
39 0.05 0.174053274 -1
39 0.36 0.522159821 -1
39 0.89 0.870266368 -1
39 -0.13 1.218372915 -1
39 -1.28 1.566479463 -1
40 -1.34 -1.566479463 1
40 -0.63 -1.218372915 1
40 0.47 -0.870266368 1
40 0.3 -0.522159821 1
40 1.51 -0.174053274 1
40 0.9 0.174053274 1
40 0.3 0.522159821 1
40 -1.67 0.870266368 1
40 0.59 1.218372915 1
40 -0.41 1.566479463 1
41 1.3 -1.566479463 1
41 -0.53 -1.218372915 1
41 0.03 -0.870266368 1
41 1.05 -0.522159821 1
41 0.2 -0.174053274 1
41 0.37 0.174053274 1
41 0.33 0.522159821 1
41 0.51 0.870266368 1
41 -1.42 1.218372915 1
41 -1.84 1.566479463 1
42 -0.88 -1.566479463 -1
42 -0.84 -1.218372915 -1
42 -0.36 -0.870266368 -1
42 -0.44 -0.522159821 -1
42 -1.27 -0.174053274 -1
42 1.08 0.174053274 -1
42 1.91 0.522159821 -1
42 0.79 0.870266368 -1
42 -0.25 1.218372915 -1
42 0.28 1.566479463 -1
43 1.09 -1.566479463 1
43 -0.96 -1.218372915 1
43 1.49 -0.870266368 1
43 -0.31 -0.522159821 1
43 1.41 -0.174053274 1
43 -0.65 0.174053274 1
43 -0.52 0.522159821 1
43 -1 0.870266368 1
43 0.34 1.218372915 1
43 -0.88 1.566479463 1
44 0.29 -1.566479463 1
44 0.69 -1.218372915 1
44 -0.1 -0.870266368 1
44 -0.4 -0.522159821 1
44 0.21 -0.174053274 1
44 -0.98 0.174053274 1
44 1.56 0.522159821 1
44 1.02 0.870266368 1
44 -0.38 1.218372915 1
44 -1.91 1.566479463 1
45 1.11 -1.566479463 1
45 1.78 -1.218372915 1
45 -0.98 -0.870266368 1
45 -1.22 -0.522159821 1
45 -0.1 -0.174053274 1
45 -1.1 0.174053274 1
45 0.43 0.522159821 1
45 -0.18 0.870266368 1
45 -0.45 1.218372915 1
45 0.72 1.566479463 1
46 -0.15 -1.566479463 1
46 -1.37 -1.218372915 1
46 -0.08 -0.870266368 1
46 0.39 -0.522159821 1
46 1.04 -0.174053274 1
46 0.73 0.174053274 1
46 0.46 0.522159821 1
46 1.08 0.870266368 1
46 -0.1 1.218372915 1
46 -1.98 1.566479463 1
47 -2.17 -1.566479463 1
47 0.59 -1.218372915 1
47 -0.25 -0.870266368 1
47 0.97 -0.522159821 1
47 -0.42 -0.174053274 1
47 -0.06 0.174053274 1
47 0.4 0.522159821 1
47 0.02 0.870266368 1
47 1.5 1.218372915 1
47 -0.57 1.566479463 1
48 -1.12 -1.566479463 1
48 -1.06 -1.218372915 1
48 -0.52 -0.870266368 1
48 0.42 -0.522159821 1
48 -0.1 -0.174053274 1
48 0.15 0.174053274 1
48 0.33 0.522159821 1
48 -0.79 0.870266368 1
48 2.29 1.218372915 1
48 0.42 1.566479463 1
49 -1.41 -1.566479463 1
49 0.74 -1.218372915 1
49 1.1 -0.870266368 1
49 -1.44 -0.522159821 1
49 -0.43 -0.174053274 1
49 1.13 0.174053274 1
49 0.44 0.522159821 1
49 -0.48 0.870266368 1
49 0.96 1.218372915 1
49 -0.62 1.566479463 1
50 -0.49 -1.566479463 1
50 -1.76 -1.218372915 1
50 -0.96 -0.870266368 1
50 -0.68 -0.522159821 1
50 -0.34 -0.174053274 1
50 0.25 0.174053274 1
50 0.9 0.522159821 1
50 0.8 0.870266368 1
50 1.27 1.218372915 1
50 1.02 1.566479463 1
51 0.97 -1.566479463 1
51 1.15 -1.218372915 1
51 -0.15 -0.870266368 1
51 -1.32 -0.522159821 1
51 -1.47 -0.174053274 1
51 1.13 0.174053274 1
51 0.07 0.522159821 1
51 0.17 0.870266368 1
51 0.55 1.218372915 1
51 -1.1 1.566479463 1
52 -0.7 -1.566479463 1
52 0.84 -1.218372915 1
52 0.48 -0.870266368 1
52 2.34 -0.522159821 1
52 0.16 -0.174053274 1
52 -0.55 0.174053274 1
52 -0.55 0.522159821 1
52 -0.57 0.870266368 1
52 -0.53 1.218372915 1
52 -0.92 1.566479463 1
53 -0.29 -1.566479463 1
53 -1.94 -1.218372915 1
53 0.44 -0.870266368 1
53 -0.73 -0.522159821 1
53 0.25 -0.174053274 1
53 0 0.174053274 1
53 0.83 0.522159821 1
53 1.71 0.870266368 1
53 0.44 1.218372915 1
53 -0.72 1.566479463 1
54 -1.37 -1.566479463 1
54 -0.45 -1.218372915 1
54 -0.84 -0.870266368 1
54 -1.47 -0.522159821 1
54 -0.06 -0.174053274 1
54 1.35 0.174053274 1
54 0.4 0.522159821 1
54 0.73 0.870266368 1
54 1.05 1.218372915 1
54 0.66 1.566479463 1
55 -1.56 -1.566479463 1
55 0.07 -1.218372915 1
55 1.14 -0.870266368 1
55 0.21 -0.522159821 1
55 -0.38 -0.174053274 1
55 0.98 0.174053274 1
55 0.66 0.522159821 1
55 0.21 0.870266368 1
55 0.5 1.218372915 1
55 -1.83 1.566479463 1
56 -0.24 -1.566479463 1
56 -0.1 -1.218372915 1
56 0.6 -0.870266368 1
56 1.46 -0.522159821 1
56 -0.13 -0.174053274 1
56 0.07 0.174053274 1
56 0.71 0.522159821 1
56 -0.97 0.870266368 1
56 0.71 1.218372915 1
56 -2.11 1.566479463 1
57 0.72 -1.566479463 1
57 2.16 -1.218372915 1
57 -0.61 -0.870266368 1
57 -0.65 -0.522159821 1
57 0.83 -0.174053274 1
57 -0.11 0.174053274 1
57 -1.21 0.522159821 1
57 -0.87 0.870266368 1
57 -0.27 1.218372915 1
57 0 1.566479463 1
58 -0.13 -1.566479463 1
58 0.24 -1.218372915 1
58 0.76 -0.870266368 1
58 1.1 -0.522159821 1
58 1.23 -0.174053274 1
58 0.58 0.174053274 1
58 -1.1 0.522159821 1
58 -0.12 0.870266368 1
58 -1.91 1.218372915 1
58 -0.65 1.566479463 1
59 -1.37 -1.566479463 1
59 0.27 -1.218372915 1
59 0.37 -0.870266368 1
59 1.53 -0.522159821 1
59 0.79 -0.174053274 1
59 -1.59 0.174053274 1
59 0.81 0.522159821 1
59 0.16 0.870266368 1
59 -0.11 1.218372915 1
59 -0.85 1.566479463 1
60 -0.63 -1.566479463 1
60 1.69 -1.218372915 1
60 0.49 -0.870266368 1
60 -0.45 -0.522159821 1
60 0.21 -0.174053274 1
60 0.47 0.174053274 1
60 -1.47 0.522159821 1
60 -1.47 0.870266368 1
60 0.44 1.218372915 1
60 0.72 1.566479463 1
61 -0.22 -1.566479463 1
61 0.32 -1.218372915 1
61 -1.03 -0.870266368 1
61 -0.07 -0.522159821 1
61 0.57 -0.174053274 1
61 1.9 0.174053274 1
61 0.66 0.522159821 1
61 0.3 0.870266368 1
61 -1.65 1.218372915 1
61 -0.79 1.566479463 1
62 -1.6 -1.566479463 -1
62 0.45 -1.218372915 -1
62 -0.71 -0.870266368 -1
62 -1.29 -0.522159821 -1
62 0.71 -0.174053274 -1
62 0.44 0.174053274 -1
62 -0.05 0.522159821 -1
62 0.22 0.870266368 -1
62 1.83 1.218372915 -1
62 -0.01 1.566479463 -1
63 0.25 -1.566479463 1
63 0.68 -1.218372915 1
63 -1.86 -0.870266368 1
63 -0.84 -0.522159821 1
63 0.78 -0.174053274 1
63 1.45 0.174053274 1
63 0.36 0.522159821 1
63 0.61 0.870266368 1
63 -0.94 1.218372915 1
63 -0.49 1.566479463 1
64 -0.12 -1.566479463 1
64 -1.01 -1.218372915 1
64 2.17 -0.870266368 1
64 -0.54 -0.522159821 1
64 -1.19 -0.174053274 1
64 0.33 0.174053274 1
64 0.55 0.522159821 1
64 -0.12 0.870266368 1
64 0.7 1.218372915 1
64 -0.79 1.566479463 1
65 -0.57 -1.566479463 1
65 1.27 -1.218372915 1
65 0.14 -0.870266368 1
65 -0.23 -0.522159821 1
65 -1.31 -0.174053274 1
65 0.29 0.174053274 1
65 1.45 0.522159821 1
65 0.93 0.870266368 1
65 -0.62 1.218372915 1
65 -1.36 1.566479463 1
66 1.66 -1.566479463 1
66 -0.07 -1.218372915 1
66 -0.01 -0.870266368 1
66 -0.08 -0.522159821 1
66 0.92 -0.174053274 1
66 1.08 0.174053274 1
66 -0.5 0.522159821 1
66 -1.06 0.870266368 1
66 -1.66 1.218372915 1
66 -0.27 1.566479463 1
67 -0.58 -1.566479463 1
67 1.27 -1.218372915 1
67 -1.15 -0.870266368 1
67 0.27 -0.522159821 1
67 1.1 -0.174053274 1
67 0.84 0.174053274 1
67 -1.5 0.522159821 1
67 0.9 0.870266368 1
67 -0.56 1.218372915 1
67 -0.61 1.566479463 1
68 -0.38 -1.566479463 1
68 1.46 -1.218372915 1
68 -0.16 -0.870266368 1
68 -1.89 -0.522159821 1
68 1.17 -0.174053274 1
68 0.66 0.174053274 1
68 -0.36 0.522159821 1
68 0.33 0.870266368 1
68 0.2 1.218372915 1
68 -1.03 1.566479463 1
69 -1.82 -1.566479463 1
69 -1.51 -1.218372915 1
69 0.25 -0.870266368 1
69 -0.54 -0.522159821 1
69 0.66 -0.174053274 1
69 0.19 0.174053274 1
69 0.8 0.522159821 1
69 1.25 0.870266368 1
69 0.6 1.218372915 1
69 0.11 1.566479463 1
70 1.49 -1.566479463 1
70 -1.04 -1.218372915 1
70 -0.74 -0.870266368 1
70 0.05 -0.522159821 1
70 -1.74 -0.174053274 1
70 -0.55 0.174053274 1
70 0.85 0.522159821 1
70 0.85 0.870266368 1
70 0.48 1.218372915 1
70 0.36 1.566479463 1
71 1.42 -1.566479463 -1
71 1.19 -1.218372915 -1
71 0.28 -0.870266368 -1
71 -0.37 -0.522159821 -1
71 1.02 -0.174053274 -1
71 -0.16 0.174053274 -1
71 -0.46 0.522159821 -1
71 -0.45 0.870266368 -1
71 -1.88 1.218372915 -1
71 -0.59 1.566479463 -1
72 -1.32 -1.566479463 -1
72 -0.03 -1.218372915 -1
72 -0.67 -0.870266368 -1
72 2.12 -0.522159821 -1
72 0.49 -0.174053274 -1
72 0.86 0.174053274 -1
72 -0.55 0.522159821 -1
72 -0.16 0.870266368 -1
72 -0.97 1.218372915 -1
72 0.21 1.566479463 -1
73 -1.09 -1.566479463 -1
73 0.41 -1.218372915 -1
73 -1.43 -0.870266368 -1
73 -0.07 -0.522159821 -1
73 0 -0.174053274 -1
73 1.77 0.174053274 -1
73 0.44 0.522159821 -1
73 -0.62 0.870266368 -1
73 1.22 1.218372915 -1
73 -0.62 1.566479463 -1
74 -0.85 -1.566479463 1
74 1.96 -1.218372915 1
74 0.3 -0.870266368 1
74 1.21 -0.522159821 1
74 -0.27 -0.174053274 1
74 0.03 0.174053274 1
74 -0.06 0.522159821 1
74 -0.09 0.870266368 1
74 -1.51 1.218372915 1
74 -0.72 1.566479463 1
75 -0.67 -1.566479463 1
75 -0.95 -1.218372915 1
75 0.56 -0.870266368 1
75 1.22 -0.522159821 1
75 0.21 -0.174053274 1
75 0.53 0.174053274 1
75 1.45 0.522159821 1
75 0.14 0.870266368 1
75 -1.64 1.218372915 1
75 -0.84 1.566479463 1
76 -1.22 -1.566479463 -1
76 0.15 -1.218372915 -1
76 -0.41 -0.870266368 -1
76 -0.2 -0.522159821 -1
76 1.18 -0.174053274 -1
76 0.13 0.174053274 -1
76 2.1 0.522159821 -1
76 -0.39 0.870266368 -1
76 -0.2 1.218372915 -1
76 -1.13 1.566479463 -1
77 0.03 -1.566479463 -1
77 -0.43 -1.218372915 -1
77 0.64 -0.870266368 -1
77 1.92 -0.522159821 -1
77 -0.36 -0.174053274 -1
77 -0.25 0.174053274 -1
77 -1.91 0.522159821 -1
77 -0.54 0.870266368 -1
77 0.72 1.218372915 -1
77 0.18 1.566479463 -1
78 0.18 -1.566479463 -1
78 0.59 -1.218372915 -1
78 -0.44 -0.870266368 -1
78 0.08 -0.522159821 -1
78 -0.9 -0.174053274 -1
78 -0.2 0.174053274 -1
78 1.5 0.522159821 -1
78 0.8 0.870266368 -1
78 0.49 1.218372915 -1
78 -2.11 1.566479463 -1
79 -0.35 -1.566479463 -1
79 -1.3 -1.218372915 -1
79 -0.07 -0.870266368 -1
79 0.21 -0.522159821 -1
79 0.68 -0.174053274 -1
79 2.32 0.174053274 -1
79 -0.32 0.522159821 -1
79 0.32 0.870266368 -1
79 -0.71 1.218372915 -1
79 -0.77 1.566479463 -1
80 -1.21 -1.566479463 -1
80 -0.33 -1.218372915 -1
80 -0.54 -0.870266368 -1
80 -0.01 -0.522159821 -1
80 -1.11 -0.174053274 -1
80 1.34 0.174053274 -1
80 0.77 0.522159821 -1
80 -0.79 0.870266368 -1
80 1.69 1.218372915 -1
80 0.17 1.566479463 -1
81 -2.08 -1.566479463 -1
81 -0.46 -1.218372915 -1
81 1.26 -0.870266368 -1
81 -0.08 -0.522159821 -1
81 -0.63 -0.174053274 -1
81 1.16 0.174053274 -1
81 -0.15 0.522159821 -1
81 0.99 0.870266368 -1
81 0.23 1.218372915 -1
81 -0.25 1.566479463 -1
82 -1.12 -1.566479463 -1
82 -1.64 -1.218372915 -1
82 1.24 -0.870266368 -1
82 -0.14 -0.522159821 -1
82 0.03 -0.174053274 -1
82 0.26 0.174053274 -1
82 0.09 0.522159821 -1
82 1.81 0.870266368 -1
82 -0.26 1.218372915 -1
82 -0.26 1.566479463 -1
83 -1.27 -1.566479463 -1
83 -1.14 -1.218372915 -1
83 0.9 -0.870266368 -1
83 0.37 -0.522159821 -1
83 1.75 -0.174053274 -1
83 0.52 0.174053274 -1
83 -0.25 0.522159821 -1
83 0.65 0.870266368 -1
83 -0.48 1.218372915 -1
83 -1.05 1.566479463 -1
84 -0.39 -1.566479463 -1
84 -2.08 -1.218372915 -1
84 0.71 -0.870266368 -1
84 -0.34 -0.522159821 -1
84 0.15 -0.174053274 -1
84 0.08 0.174053274 -1
84 1.39 0.522159821 -1
84 -0.1 0.870266368 -1
84 1.23 1.218372915 -1
84 -0.66 1.566479463 -1
85 -0.31 -1.566479463 1
85 1.64 -1.218372915 1
85 -0.55 -0.870266368 1
85 -0.19 -0.522159821 1
85 -1.66 -0.174053274 1
85 1.24 0.174053274 1
85 -0.62 0.522159821 1
85 1 0.870266368 1
85 -0.09 1.218372915 1
85 -0.45 1.566479463 1
86 -0.08 -1.566479463 -1
86 -0.33 -1.218372915 -1
86 0.69 -0.870266368 -1
86 0.25 -0.522159821 -1
86 0.87 -0.174053274 -1
86 -0.14 0.174053274 -1
86 1.89 0.522159821 -1
86 -1.73 0.870266368 -1
86 -0.78 1.218372915 -1
86 -0.64 1.566479463 -1
87 -0.75 -1.566479463 -1
87 -0.53 -1.218372915 -1
87 -0.53 -0.870266368 -1
87 1.11 -0.522159821 -1
87 0.46 -0.174053274 -1
87 0.71 0.174053274 -1
87 0.42 0.522159821 -1
87 -2.13 0.870266368 -1
87 0.16 1.218372915 -1
87 1.08 1.566479463 -1
88 -1.63 -1.566479463 -1
88 0.91 -1.218372915 -1
88 1.55 -0.870266368 -1
88 -0.3 -0.522159821 -1
88 -0.02 -0.174053274 -1
88 0.63 0.174053274 -1
88 0.42 0.522159821 -1
88 -1.31 0.870266368 -1
88 -0.71 1.218372915 -1
88 0.46 1.566479463 -1
89 -1.25 -1.566479463 -1
89 0.86 -1.218372915 -1
89 -0.39 -0.870266368 -1
89 -1 -0.522159821 -1
89 -0.35 -0.174053274 -1
89 -0.33 0.174053274 -1
89 1.42 0.522159821 -1
89 -0.54 0.870266368 -1
89 -0.15 1.218372915 -1
89 1.73 1.566479463 -1
90 -0.5 -1.566479463 -1
90 -1.14 -1.218372915 -1
90 0.28 -0.870266368 -1
90 1.62 -0.522159821 -1
90 -0.15 -0.174053274 -1
90 -1.57 0.174053274 -1
90 -0.3 0.522159821 -1
90 -0.3 0.870266368 -1
90 0.98 1.218372915 -1
90 1.07 1.566479463 -1
91 -1.05 -1.566479463 1
91 0.46 -1.218372915 1
91 -0.33 -0.870266368 1
91 1.04 -0.522159821 1
91 1.24 -0.174053274 1
91 0.65 0.174053274 1
91 1.11 0.522159821 1
91 -1.17 0.870266368 1
91 -0.91 1.218372915 1
91 -1.04 1.566479463 1
92 -1.31 -1.566479463 1
92 0.97 -1.218372915 1
92 0.63 -0.870266368 1
92 1.35 -0.522159821 1
92 -0.34 -0.174053274 1
92 0.17 0.174053274 1
92 0.59 0.522159821 1
92 -1.18 0.870266368 1
92 -1.4 1.218372915 1
92 0.51 1.566479463 1
93 -2.03 -1.566479463 1
93 -0.28 -1.218372915 1
93 -0.51 -0.870266368 1
93 0.22 -0.522159821 1
93 -1.03 -0.174053274 1
93 0.8 0.174053274 1
93 1.12 0.522159821 1
93 0.24 0.870266368 1
93 0.3 1.218372915 1
93 1.17 1.566479463 1
94 0.58 -1.566479463 1
94 -0.95 -1.218372915 1
94 -1.18 -0.870266368 1
94 -1.1 -0.522159821 1
94 0.51 -0.174053274 1
94 -0.34 0.174053274 1
94 2.11 0.522159821 1
94 0.51 0.870266368 1
94 0.12 1.218372915 1
94 -0.26 1.566479463 1
95 -0.89 -1.566479463 1
95 1.46 -1.218372915 1
95 0.57 -0.870266368 1
95 1.25 -0.522159821 1
95 0.55 -0.174053274 1
95 0.04 0.174053274 1
95 0.23 0.522159821 1
95 -0.93 0.870266368 1
95 -0.74 1.218372915 1
95 -1.56 1.566479463 1
96 -0.68 -1.566479463 -1
96 -1.03 -1.218372915 -1
96 -0.15 -0.870266368 -1
96 -1.01 -0.522159821 -1
96 0.29 -0.174053274 -1
96 -1.14 0.174053274 -1
96 0.4 0.522159821 -1
96 1.05 0.870266368 -1
96 1.91 1.218372915 -1
96 0.36 1.566479463 -1
97 -1.48 -1.566479463 -1
97 -1.59 -1.218372915 -1
97 1.31 -0.870266368 -1
97 -0.26 -0.522159821 -1
97 1.06 -0.174053274 -1
97 0.72 0.174053274 -1
97 0.27 0.522159821 -1
97 -0.01 0.870266368 -1
97 0.63 1.218372915 -1
97 -0.64 1.566479463 -1
98 -1.18 -1.566479463 1
98 0.47 -1.218372915 1
98 0.01 -0.870266368 1
98 -1.69 -0.522159821 1
98 0.47 -0.174053274 1
98 1.2 0.174053274 1
98 -1.2 0.522159821 1
98 1.01 0.870266368 1
98 0.39 1.218372915 1
98 0.52 1.566479463 1
99 -0.13 -1.566479463 -1
99 0.39 -1.218372915 -1
99 -0.67 -0.870266368 -1
99 1.21 -0.522159821 -1
99 1.55 -0.174053274 -1
99 -0.13 0.174053274 -1
99 -1.41 0.522159821 -1
99 -0.16 0.870266368 -1
99 -1.4 1.218372915 -1
99 0.74 1.566479463 -1
100 -1.04 -1.566479463 -1
100 -0.84 -1.218372915 -1
100 -0.64 -0.870266368 -1
100 -0.79 -0.522159821 -1
100 0.69 -0.174053274 -1
100 0.69 0.174053274 -1
100 0.59 0.522159821 -1
100 2.13 0.870266368 -1
100 -0.26 1.218372915 -1
100 -0.54 1.566479463 -1
101 -0.67 -1.566479463 1
101 -0.36 -1.218372915 1
101 -1.41 -0.870266368 1
101 0.33 -0.522159821 1
101 0.12 -0.174053274 1
101 1.32 0.174053274 1
101 0.97 0.522159821 1
101 -0.4 0.870266368 1
101 -1.27 1.218372915 1
101 1.36 1.566479463 1
102 -0.32 -1.566479463 1
102 0.47 -1.218372915 1
102 0.92 -0.870266368 1
102 1.08 -0.522159821 1
102 -1.18 -0.174053274 1
102 -0.26 0.174053274 1
102 -1.8 0.522159821 1
102 0.73 0.870266368 1
102 1.02 1.218372915 1
102 -0.65 1.566479463 1
103 -1.5 -1.566479463 1
103 -0.34 -1.218372915 1
103 0.79 -0.870266368 1
103 -0.03 -0.522159821 1
103 0.15 -0.174053274 1
103 1.12 0.174053274 1
103 1.62 0.522159821 1
103 -0.22 0.870266368 1
103 -0.15 1.218372915 1
103 -1.43 1.566479463 1
104 -0.18 -1.566479463 1
104 -1.09 -1.218372915 1
104 -1.36 -0.870266368 1
104 2.13 -0.522159821 1
104 -0.41 -0.174053274 1
104 0.54 0.174053274 1
104 -0.24 0.522159821 1
104 0.84 0.870266368 1
104 0.16 1.218372915 1
104 -0.39 1.566479463 1
105 -0.04 -1.566479463 1
105 0.05 -1.218372915 1
105 0.42 -0.870266368 1
105 -0.22 -0.522159821 1
105 0.92 -0.174053274 1
105 0.52 0.174053274 1
105 1.27 0.522159821 1
105 -0.21 0.870266368 1
105 -2.43 1.218372915 1
105 -0.28 1.566479463 1
106 -0.14 -1.566479463 -1
106 -0.45 -1.218372915 -1
106 -1.06 -0.870266368 -1
106 0.81 -0.522159821 -1
106 1.31 -0.174053274 -1
106 -0.14 0.174053274 -1
106 -0.1 0.522159821 -1
106 -1.94 0.870266368 -1
106 0.7 1.218372915 -1
106 1.01 1.566479463 -1
107 0.63 -1.566479463 -1
107 0.59 -1.218372915 -1
107 1.17 -0.870266368 -1
107 1.15 -0.522159821 -1
107 0.11 -0.174053274 -1
107 -1.09 0.174053274 -1
107 0.61 0.522159821 -1
107 -1.62 0.870266368 -1
107 -1.1 1.218372915 -1
107 -0.43 1.566479463 -1
108 -1.17 -1.566479463 1
108 -0.69 -1.218372915 1
108 -0.56 -0.870266368 1
108 -0.52 -0.522159821 1
108 -0.72 -0.174053274 1
108 1.79 0.174053274 1
108 1.48 0.522159821 1
108 -0.04 0.870266368 1
108 -0.3 1.218372915 1
108 0.74 1.566479463 1
109 1.29 -1.566479463 -1
109 0.82 -1.218372915 -1
109 -1.28 -0.870266368 -1
109 -0.17 -0.522159821 -1
109 -1.07 -0.174053274 -1
109 -0.9 0.174053274 -1
109 -0.98 0.522159821 -1
109 0.3 0.870266368 -1
109 1.08 1.218372915 -1
109 0.91 1.566479463 -1
110 -1.13 -1.566479463 1
110 -0.67 -1.218372915 1
110 -0.55 -0.870266368 1
110 0.14 -0.522159821 1
110 1.95 -0.174053274 1
110 -0.35 0.174053274 1
110 -0.73 0.522159821 1
110 -0.37 0.870266368 1
110 0.21 1.218372915 1
110 1.52 1.566479463 1
111 -1.7 -1.566479463 -1
111 -0.65 -1.218372915 -1
111 -0.97 -0.870266368 -1
111 -0.62 -0.522159821 -1
111 0.85 -0.174053274 -1
111 1.48 0.174053274 -1
111 -0.06 0.522159821 -1
111 1.02 0.870266368 -1
111 0.01 1.218372915 -1
111 0.64 1.566479463 -1
112 -1.99 -1.566479463 1
112 -0.3 -1.218372915 1
112 0.52 -0.870266368 1
112 0.19 -0.522159821 1
112 -0.38 -0.174053274 1
112 0.19 0.174053274 1
112 0.41 0.522159821 1
112 1.99 0.870266368 1
112 -0.08 1.218372915 1
112 -0.55 1.566479463 1
113 -0.77 -1.566479463 1
113 -0.42 -1.218372915 1
113 -1.22 -0.870266368 1
113 0.02 -0.522159821 1
113 0.95 -0.174053274 1
113 0.48 0.174053274 1
113 2.24 0.522159821 1
113 -0.23 0.870266368 1
113 -0.55 1.218372915 1
113 -0.5 1.566479463 1
114 -0.84 -1.566479463 1
114 -0.4 -1.218372915 1
114 -1.3 -0.870266368 1
114 -1.05 -0.522159821 1
114 -0.22 -0.174053274 1
114 1.01 0.174053274 1
114 -0.04 0.522159821 1
114 1.81 0.870266368 1
114 1 1.218372915 1
114 0.03 1.566479463 1
115 -1.89 -1.566479463 -1
115 0.22 -1.218372915 -1
115 -0.41 -0.870266368 -1
115 -0.18 -0.522159821 -1
115 -0.21 -0.174053274 -1
115 1.48 0.174053274 -1
115 -0.92 0.522159821 -1
115 0.88 0.870266368 -1
115 -0.12 1.218372915 -1
115 1.14 1.566479463 -1
116 -0.23 -1.566479463 1
116 0.62 -1.218372915 1
116 -1.08 -0.870266368 1
116 1.18 -0.522159821 1
116 -0.7 -0.174053274 1
116 0.84 0.174053274 1
116 0.77 0.522159821 1
116 -0.48 0.870266368 1
116 -1.79 1.218372915 1
116 0.88 1.566479463 1
117 -1.55 -1.566479463 -1
117 0.33 -1.218372915 -1
117 0.27 -0.870266368 -1
117 0.29 -0.522159821 -1
117 1.59 -0.174053274 -1
117 -1.06 0.174053274 -1
117 1.13 0.522159821 -1
117 0.45 0.870266368 -1
117 -0.44 1.218372915 -1
117 -1 1.566479463 -1
118 -1.01 -1.566479463 -1
118 -1.32 -1.218372915 -1
118 -0.23 -0.870266368 -1
118 1.24 -0.522159821 -1
118 1.13 -0.174053274 -1
118 1.24 0.174053274 -1
118 0.01 0.522159821 -1
118 -1.25 0.870266368 -1
118 -0.26 1.218372915 -1
118 0.45 1.566479463 -1
119 1.6 -1.566479463 1
119 0.48 -1.218372915 1
119 -0.76 -0.870266368 1
119 -0.85 -0.522159821 1
119 0.76 -0.174053274 1
119 1.2 0.174053274 1
119 -0.59 0.522159821 1
119 -1.38 0.870266368 1
119 0.28 1.218372915 1
119 -0.74 1.566479463 1
120 -0.73 -1.566479463 1
120 -0.54 -1.218372915 1
120 0.06 -0.870266368 1
120 0.69 -0.522159821 1
120 2.16 -0.174053274 1
120 -0.66 0.174053274 1
120 -0.47 0.522159821 1
120 1.06 0.870266368 1
120 -0.82 1.218372915 1
120 -0.76 1.566479463 1
121 0.54 -1.566479463 1
121 -1.45 -1.218372915 1
121 -0.01 -0.870266368 1
121 0.95 -0.522159821 1
121 1 -0.174053274 1
121 -2.02 0.174053274 1
121 0.52 0.522159821 1
121 -0.25 0.870266368 1
121 0.45 1.218372915 1
121 0.28 1.566479463 1
122 -0.35 -1.566479463 1
122 0.9 -1.218372915 1
122 1.19 -0.870266368 1
122 0.5 -0.522159821 1
122 -0.13 -0.174053274 1
122 0 0.174053274 1
122 0.59 0.522159821 1
122 0.64 0.870266368 1
122 -1.45 1.218372915 1
122 -1.88 1.566479463 1
123 -1.25 -1.566479463 1
123 -0.44 -1.218372915 1
123 -1.41 -0.870266368 1
123 1.07 -0.522159821 1
123 0.47 -0.174053274 1
123 0.85 0.174053274 1
123 1.49 0.522159821 1
123 -0.13 0.870266368 1
123 0.26 1.218372915 1
123 -0.92 1.566479463 1
124 -0.97 -1.566479463 1
124 0.2 -1.218372915 1
124 -0.6 -0.870266368 1
124 1.58 -0.522159821 1
124 -0.04 -0.174053274 1
124 -0.48 0.174053274 1
124 1.87 0.522159821 1
124 0.05 0.870266368 1
124 -0.58 1.218372915 1
124 -1.04 1.566479463 1
125 0.09 -1.566479463 1
125 0.71 -1.218372915 1
125 0.94 -0.870266368 1
125 -0.76 -0.522159821 1
125 0.69 -0.174053274 1
125 -0.82 0.174053274 1
125 1.14 0.522159821 1
125 -0.22 0.870266368 1
125 0.33 1.218372915 1
125 -2.1 1.566479463 1
126 -0.61 -1.566479463 1
126 1.43 -1.218372915 1
126 -0.25 -0.870266368 1
126 0.68 -0.522159821 1
126 -1.41 -0.174053274 1
126 -0.22 0.174053274 1
126 -1.03 0.522159821 1
126 0.07 0.870266368 1
126 1.69 1.218372915 1
126 -0.35 1.566479463 1
127 -0.54 -1.566479463 1
127 1.09 -1.218372915 1
127 -0.28 -0.870266368 1
127 -0.33 -0.522159821 1
127 -1.25 -0.174053274 1
127 0.64 0.174053274 1
127 1.83 0.522159821 1
127 0.62 0.870266368 1
127 -0.78 1.218372915 1
127 -1.01 1.566479463 1
128 -1.04 -1.566479463 -1
128 0.31 -1.218372915 -1
128 0.56 -0.870266368 -1
128 0.22 -0.522159821 -1
128 0.84 -0.174053274 -1
128 0.19 0.174053274 -1
128 -2.19 0.522159821 -1
128 1.37 0.870266368 -1
128 -0.02 1.218372915 -1
128 -0.24 1.566479463 -1
129 0.32 -1.566479463 1
129 -2.21 -1.218372915 1
129 -1.16 -0.870266368 1
129 0.51 -0.522159821 1
129 0.07 -0.174053274 1
129 1.12 0.174053274 1
129 0.85 0.522159821 1
129 -0.3 0.870266368 1
129 0.48 1.218372915 1
129 0.32 1.566479463 1
130 -0.71 -1.566479463 -1
130 -1.57 -1.218372915 -1
130 0.65 -0.870266368 -1
130 0.65 -0.522159821 -1
130 -0.78 -0.174053274 -1
130 -0.71 0.174053274 -1
130 1.94 0.522159821 -1
130 -0.21 0.870266368 -1
130 0.44 1.218372915 -1
130 0.29 1.566479463 -1
131 0.27 -1.566479463 1
131 -0.38 -1.218372915 1
131 1.3 -0.870266368 1
131 0.54 -0.522159821 1
131 -0.64 -0.174053274 1
131 0.19 0.174053274 1
131 0.82 0.522159821 1
131 -0.05 0.870266368 1
131 0.3 1.218372915 1
131 -2.37 1.566479463 1
132 -0.62 -1.566479463 1
132 0.54 -1.218372915 1
132 -0.89 -0.870266368 1
132 0.65 -0.522159821 1
132 -0.57 -0.174053274 1
132 0.25 0.174053274 1
132 -0.3 0.522159821 1
132 0.65 0.870266368 1
132 1.9 1.218372915 1
132 -1.61 1.566479463 1
133 -1.65 -1.566479463 -1
133 -0.37 -1.218372915 -1
133 -0.33 -0.870266368 -1
133 -0.26 -0.522159821 -1
133 -0.44 -0.174053274 -1
133 -0.44 0.174053274 -1
133 0.7 0.522159821 -1
133 1.12 0.870266368 -1
133 1.94 1.218372915 -1
133 -0.26 1.566479463 -1
134 1.2 -1.566479463 1
134 -1.13 -1.218372915 1
134 -0.2 -0.870266368 1
134 -0.06 -0.522159821 1
134 0.59 -0.174053274 1
134 -2.16 0.174053274 1
134 -0.06 0.522159821 1
134 0.87 0.870266368 1
134 0.45 1.218372915 1
134 0.5 1.566479463 1
135 -1.55 -1.566479463 1
135 0.76 -1.218372915 1
135 1.54 -0.870266368 1
135 -0.24 -0.522159821 1
135 -0.82 -0.174053274 1
135 0.49 0.174053274 1
135 0.37 0.522159821 1
135 0.05 0.870266368 1
135 -1.39 1.218372915 1
135 0.79 1.566479463 1
136 -1.9 -1.566479463 -1
136 -0.9 -1.218372915 -1
136 0.46 -0.870266368 -1
136 0.49 -0.522159821 -1
136 0.49 -0.174053274 -1
136 1.26 0.174053274 -1
136 0.65 0.522159821 -1
136 -0.07 0.870266368 -1
136 -1.18 1.218372915 -1
136 0.7 1.566479463 -1
137 1.6 -1.566479463 -1
137 -0.21 -1.218372915 -1
137 -2.16 -0.870266368 -1
137 0.47 -0.522159821 -1
137 -0.62 -0.174053274 -1
137 0.42 0.174053274 -1
137 -0.12 0.522159821 -1
137 0.24 0.870266368 -1
137 -0.44 1.218372915 -1
137 0.83 1.566479463 -1
138 -0.65 -1.566479463 1
138 -0.45 -1.218372915 1
138 0.11 -0.870266368 1
138 0.85 -0.522159821 1
138 -0.13 -0.174053274 1
138 0.73 0.174053274 1
138 1.15 0.522159821 1
138 -0.74 0.870266368 1
138 1.12 1.218372915 1
138 -1.99 1.566479463 1
139 -1.37 -1.566479463 -1
139 0.64 -1.218372915 -1
139 -1.01 -0.870266368 -1
139 -0.8 -0.522159821 -1
139 -1.01 -0.174053274 -1
139 1.59 0.174053274 -1
139 0.68 0.522159821 -1
139 -0.1 0.870266368 -1
139 0.89 1.218372915 -1
139 0.5 1.566479463 -1
140 0.81 -1.566479463 -1
140 0.33 -1.218372915 -1
140 0.97 -0.870266368 -1
140 -1.41 -0.522159821 -1
140 1.6 -0.174053274 -1
140 -0.2 0.174053274 -1
140 -0.99 0.522159821 -1
140 -1.25 0.870266368 -1
140 -0.19 1.218372915 -1
140 0.33 1.566479463 -1
141 1.86 -1.566479463 -1
141 -0.5 -1.218372915 -1
141 0.9 -0.870266368 -1
141 0.26 -0.522159821 -1
141 -0.19 -0.174053274 -1
141 -0.89 0.174053274 -1
141 -1.84 0.522159821 -1
141 0.26 0.870266368 -1
141 -0.19 1.218372915 -1
141 0.33 1.566479463 -1
142 -0.32 -1.566479463 -1
142 -0.37 -1.218372915 -1
142 1.77 -0.870266368 -1
142 -0.88 -0.522159821 -1
142 -1.09 -0.174053274 -1
142 -0.17 0.174053274 -1
142 0.96 0.522159821 -1
142 1.37 0.870266368 -1
142 -0.78 1.218372915 -1
142 -0.47 1.566479463 -1
143 -2.29 -1.566479463 -1
143 0.11 -1.218372915 -1
143 -0.18 -0.870266368 -1
143 1.34 -0.522159821 -1
143 0.68 -0.174053274 -1
143 0.97 0.174053274 -1
143 -0.46 0.522159821 -1
143 -0.32 0.870266368 -1
143 0.39 1.218372915 -1
143 -0.23 1.566479463 -1
144 -0.87 -1.566479463 1
144 -0.38 -1.218372915 1
144 -0.23 -0.870266368 1
144 0.33 -0.522159821 1
144 0.43 -0.174053274 1
144 1.04 0.174053274 1
144 0.55 0.522159821 1
144 1.59 0.870266368 1
144 -0.6 1.218372915 1
144 -1.87 1.566479463 1
145 -2.12 -1.566479463 -1
145 0.29 -1.218372915 -1
145 1.58 -0.870266368 -1
145 -0.68 -0.522159821 -1
145 0.26 -0.174053274 -1
145 0.23 0.174053274 -1
145 0.51 0.522159821 -1
145 -0.8 0.870266368 -1
145 0.04 1.218372915 -1
145 0.67 1.566479463 -1
146 0.09 -1.566479463 1
146 -1.81 -1.218372915 1
146 -0.75 -0.870266368 1
146 0.02 -0.522159821 1
146 1.05 -0.174053274 1
146 -0.25 0.174053274 1
146 0.49 0.522159821 1
146 0.31 0.870266368 1
146 1.71 1.218372915 1
146 -0.86 1.566479463 1
147 -1.3 -1.566479463 -1
147 -0.56 -1.218372915 -1
147 0.57 -0.870266368 -1
147 0.22 -0.522159821 -1
147 -1.14 -0.174053274 -1
147 -1.02 0.174053274 -1
147 1.77 0.522159821 -1
147 0.92 0.870266368 -1
147 -0.01 1.218372915 -1
147 0.57 1.566479463 -1
148 -1.27 -1.566479463 1
148 -0.77 -1.218372915 1
148 0.27 -0.870266368 1
148 0.64 -0.522159821 1
148 1.9 -0.174053274 1
148 0.15 0.174053274 1
148 -1.17 0.522159821 1
148 -0.5 0.870266368 1
148 1.01 1.218372915 1
148 -0.25 1.566479463 1
149 -0.28 -1.566479463 1
149 -1.35 -1.218372915 1
149 0.08 -0.870266368 1
149 1.66 -0.522159821 1
149 1.03 -0.174053274 1
149 -0.28 0.174053274 1
149 -0.69 0.522159821 1
149 -0.1 0.870266368 1
149 1.13 1.218372915 1
149 -1.2 1.566479463 1
150 -0.46 -1.566479463 1
150 -1.18 -1.218372915 1
150 0 -0.870266368 1
150 0.47 -0.522159821 1
150 1.09 -0.174053274 1
150 -0.8 0.174053274 1
150 -1.36 0.522159821 1
150 0.45 0.870266368 1
150 1.81 1.218372915 1
150 -0.02 1.566479463 1
151 -0.79 -1.566479463 1
151 0 -1.218372915 1
151 -0.85 -0.870266368 1
151 0.12 -0.522159821 1
151 1.28 -0.174053274 1
151 1.73 0.174053274 1
151 0.3 0.522159821 1
151 0 0.870266368 1
151 -0.09 1.218372915 1
151 -1.7 1.566479463 1
152 -0.08 -1.566479463 -1
152 0.28 -1.218372915 -1
152 0.22 -0.870266368 -1
152 0.6 -0.522159821 -1
152 -0.38 -0.174053274 -1
152 1.85 0.174053274 -1
152 -0.58 0.522159821 -1
152 0.76 0.870266368 -1
152 -0.88 1.218372915 -1
152 -1.8 1.566479463 -1
153 -0.59 -1.566479463 1
153 0.93 -1.218372915 1
153 -1.01 -0.870266368 1
153 1.34 -0.522159821 1
153 0.07 -0.174053274 1
153 0.81 0.174053274 1
153 0.57 0.522159821 1
153 0.24 0.870266368 1
153 -1.94 1.218372915 1
153 -0.41 1.566479463 1
154 -1.22 -1.566479463 -1
154 0.79 -1.218372915 -1
154 -0.45 -0.870266368 -1
154 1.02 -0.522159821 -1
154 -0.11 -0.174053274 -1
154 1.18 0.174053274 -1
154 1.4 0.522159821 -1
154 -0.9 0.870266368 -1
154 -0.93 1.218372915 -1
154 -0.77 1.566479463 -1
155 -1.35 -1.566479463 1
155 -0.11 -1.218372915 1
155 0.34 -0.870266368 1
155 -1.89 -0.522159821 1
155 0 -0.174053274 1
155 0.12 0.174053274 1
155 0.11 0.522159821 1
155 0.97 0.870266368 1
155 0.25 1.218372915 1
155 1.56 1.566479463 1
156 0.72 -1.566479463 -1
156 0.17 -1.218372915 -1
156 0.89 -0.870266368 -1
156 -0.6 -0.522159821 -1
156 -0.11 -0.174053274 -1
156 -1.65 0.174053274 -1
156 -0.27 0.522159821 -1
156 0.83 0.870266368 -1
156 -1.37 1.218372915 -1
156 1.39 1.566479463 -1
157 -1.53 -1.566479463 -1
157 -0.23 -1.218372915 -1
157 -0.53 -0.870266368 -1
157 1.21 -0.522159821 -1
157 0.88 -0.174053274 -1
157 1.04 0.174053274 -1
157 0.3 0.522159821 -1
157 -0.83 0.870266368 -1
157 0.88 1.218372915 -1
157 -1.2 1.566479463 -1
158 -0.67 -1.566479463 -1
158 1.15 -1.218372915 -1
158 0.55 -0.870266368 -1
158 1.36 -0.522159821 -1
158 0.03 -0.174053274 -1
158 -0.36 0.174053274 -1
158 -0.52 0.522159821 -1
158 1.1 0.870266368 -1
158 -1.35 1.218372915 -1
158 -1.29 1.566479463 -1
159 1.82 -1.566479463 -1
159 -1.15 -1.218372915 -1
159 0.71 -0.870266368 -1
159 0.91 -0.522159821 -1
159 -0.5 -0.174053274 -1
159 -0.15 0.174053274 -1
159 0.66 0.522159821 -1
159 -0.2 0.870266368 -1
159 -1.25 1.218372915 -1
159 -0.85 1.566479463 -1
160 0.35 -1.566479463 -1
160 1.21 -1.218372915 -1
160 -1.07 -0.870266368 -1
160 -1.66 -0.522159821 -1
160 0.75 -0.174053274 -1
160 -0.24 0.174053274 -1
160 -1.13 0.522159821 -1
160 1.01 0.870266368 -1
160 0.02 1.218372915 -1
160 0.75 1.566479463 -1
161 -0.25 -1.566479463 -1
161 -0.93 -1.218372915 -1
161 0.01 -0.870266368 -1
161 -0.65 -0.522159821 -1
161 -0.5 -0.174053274 -1
161 0.12 0.174053274 -1
161 2.61 0.522159821 -1
161 0.41 0.870266368 -1
161 -0.57 1.218372915 -1
161 -0.25 1.566479463 -1
162 -0.66 -1.566479463 -1
162 1.72 -1.218372915 -1
162 -0.57 -0.870266368 -1
162 -0.32 -0.522159821 -1
162 0.55 -0.174053274 -1
162 0.98 0.174053274 -1
162 0.17 0.522159821 -1
162 0.15 0.870266368 -1
162 -1.96 1.218372915 -1
162 -0.06 1.566479463 -1
163 -1.12 -1.566479463 -1
163 -0.55 -1.218372915 -1
163 -1.4 -0.870266368 -1
163 -0.12 -0.522159821 -1
163 -0.15 -0.174053274 -1
163 -0.9 0.174053274 -1
163 1.06 0.522159821 -1
163 1.17 0.870266368 -1
163 1.24 1.218372915 -1
163 0.78 1.566479463 -1
164 0.01 -1.566479463 1
164 1.03 -1.218372915 1
164 -0.47 -0.870266368 1
164 1.53 -0.522159821 1
164 0.57 -0.174053274 1
164 0.73 0.174053274 1
164 0.06 0.522159821 1
164 -1.64 0.870266368 1
164 -0.62 1.218372915 1
164 -1.2 1.566479463 1
165 0.71 -1.566479463 1
165 0.45 -1.218372915 1
165 0.88 -0.870266368 1
165 0.2 -0.522159821 1
165 -2.1 -0.174053274 1
165 0.62 0.174053274 1
165 0.33 0.522159821 1
165 -0.43 0.870266368 1
165 -1.38 1.218372915 1
165 0.72 1.566479463 1
166 -1.59 -1.566479463 -1
166 -0.44 -1.218372915 -1
166 1.29 -0.870266368 -1
166 0.13 -0.522159821 -1
166 0.34 -0.174053274 -1
166 0.66 0.174053274 -1
166 1.59 0.522159821 -1
166 -0.61 0.870266368 -1
166 -0.32 1.218372915 -1
166 -1.04 1.566479463 -1
167 -0.41 -1.566479463 -1
167 0.18 -1.218372915 -1
167 0.43 -0.870266368 -1
167 1.2 -0.522159821 -1
167 -0.22 -0.174053274 -1
167 0.27 0.174053274 -1
167 1.58 0.522159821 -1
167 -1.27 0.870266368 -1
167 -0.06 1.218372915 -1
167 -1.71 1.566479463 -1
168 0.66 -1.566479463 1
168 -2.22 -1.218372915 1
168 -0.75 -0.870266368 1
168 0.42 -0.522159821 1
168 -0.75 -0.174053274 1
168 0.49 0.174053274 1
168 0.61 0.522159821 1
168 0.81 0.870266368 1
168 -0.27 1.218372915 1
168 1 1.566479463 1
169 1.21 -1.566479463 1
169 -0.32 -1.218372915 1
169 -1.07 -0.870266368 1
169 0.99 -0.522159821 1
169 -0.64 -0.174053274 1
169 -1.47 0.174053274 1
169 0.24 0.522159821 1
169 -0.77 0.870266368 1
169 0.44 1.218372915 1
169 1.39 1.566479463 1
170 -0.75 -1.566479463 1
170 -2.09 -1.218372915 1
170 0.57 -0.870266368 1
170 1.24 -0.522159821 1
170 0.6 -0.174053274 1
170 -0.55 0.174053274 1
170 -0.59 0.522159821 1
170 0.06 0.870266368 1
170 0.6 1.218372915 1
170 0.92 1.566479463 1
171 -0.81 -1.566479463 1
171 -1.21 -1.218372915 1
171 1.7 -0.870266368 1
171 0.18 -0.522159821 1
171 -0.33 -0.174053274 1
171 0.07 0.174053274 1
171 0.4 0.522159821 1
171 0.64 0.870266368 1
171 0.91 1.218372915 1
171 -1.56 1.566479463 1
172 0.22 -1.566479463 1
172 -0.04 -1.218372915 1
172 -1.1 -0.870266368 1
172 -0.78 -0.522159821 1
172 0.04 -0.174053274 1
172 -0.46 0.174053274 1
172 1.87 0.522159821 1
172 0.54 0.870266368 1
172 1.09 1.218372915 1
172 -1.4 1.566479463 1
173 -0.51 -1.566479463 1
173 -0.41 -1.218372915 1
173 0.87 -0.870266368 1
173 1.44 -0.522159821 1
173 0.79 -0.174053274 1
173 -0.97 0.174053274 1
173 -0.02 0.522159821 1
173 1.17 0.870266368 1
173 -1.24 1.218372915 1
173 -1.12 1.566479463 1
174 0.5 -1.566479463 1
174 -1.96 -1.218372915 1
174 -0.42 -0.870266368 1
174 0.33 -0.522159821 1
174 1.9 -0.174053274 1
174 0.13 0.174053274 1
174 -0.81 0.522159821 1
174 0.46 0.870266368 1
174 0.19 1.218372915 1
174 -0.32 1.566479463 1
175 -1.22 -1.566479463 1
175 0.88 -1.218372915 1
175 0.52 -0.870266368 1
175 0.4 -0.522159821 1
175 -1.49 -0.174053274 1
175 -0.77 0.174053274 1
175 1.13 0.522159821 1
175 -0.94 0.870266368 1
175 0.43 1.218372915 1
175 1.07 1.566479463 1
176 0.13 -1.566479463 1
176 -1.94 -1.218372915 1
176 -0.01 -0.870266368 1
176 0.94 -0.522159821 1
176 0.85 -0.174053274 1
176 0.46 0.174053274 1
176 0.2 0.522159821 1
176 1.18 0.870266368 1
176 -1.31 1.218372915 1
176 -0.5 1.566479463 1
177 -1.97 -1.566479463 -1
177 0.05 -1.218372915 -1
177 -0.75 -0.870266368 -1
177 -0.5 -0.522159821 -1
177 -0.03 -0.174053274 -1
177 1.19 0.174053274 -1
177 1.38 0.522159821 -1
177 0.8 0.870266368 -1
177 0.33 1.218372915 -1
177 -0.5 1.566479463 -1
178 -0.05 -1.566479463 1
178 -1.07 -1.218372915 1
178 -0.16 -0.870266368 1
178 0.06 -0.522159821 1
178 -1.25 -0.174053274 1
178 -0.1 0.174053274 1
178 0.67 0.522159821 1
178 -0.53 0.870266368 1
178 0.06 1.218372915 1
178 2.35 1.566479463 1
179 -1.35 -1.566479463 1
179 -0.84 -1.218372915 1
179 -0.28 -0.870266368 1
179 1.57 -0.522159821 1
179 0.97 -0.174053274 1
179 -0.22 0.174053274 1
179 -0.16 0.522159821 1
179 1.45 0.870266368 1
179 -0.31 1.218372915 1
179 -0.84 1.566479463 1
180 -2.01 -1.566479463 1
180 -0.79 -1.218372915 1
180 0.64 -0.870266368 1
180 -0.28 -0.522159821 1
180 1.19 -0.174053274 1
180 1.43 0.174053274 1
180 -0.5 0.522159821 1
180 0.27 0.870266368 1
180 0.15 1.218372915 1
180 -0.11 1.566479463 1
181 -0.43 -1.566479463 1
181 0.31 -1.218372915 1
181 -0.21 -0.870266368 1
181 -1.76 -0.522159821 1
181 -0.39 -0.174053274 1
181 1.62 0.174053274 1
181 -0.21 0.522159821 1
181 1.37 0.870266368 1
181 0.51 1.218372915 1
181 -0.8 1.566479463 1
182 -0.06 -1.566479463 -1
182 -0.95 -1.218372915 -1
182 -0.06 -0.870266368 -1
182 0.93 -0.522159821 -1
182 -0.66 -0.174053274 -1
182 -0.23 0.174053274 -1
182 -0.49 0.522159821 -1
182 1.03 0.870266368 -1
182 -1.38 1.218372915 -1
182 1.88 1.566479463 -1
183 -0.25 -1.566479463 1
183 -1.59 -1.218372915 1
183 -0.27 -0.870266368 1
183 0.49 -0.522159821 1
183 -0.88 -0.174053274 1
183 -1.12 0.174053274 1
183 1.12 0.522159821 1
183 0.22 0.870266368 1
183 0.85 1.218372915 1
183 1.43 1.566479463 1
184 -1.88 -1.566479463 1
184 -0.75 -1.218372915 1
184 -0.24 -0.870266368 1
184 -1.21 -0.522159821 1
184 0.64 -0.174053274 1
184 0.45 0.174053274 1
184 1.29 0.522159821 1
184 0.32 0.870266368 1
184 0.46 1.218372915 1
184 0.91 1.566479463 1
185 -1.86 -1.566479463 1
185 -0.66 -1.218372915 1
185 0.53 -0.870266368 1
185 -0.67 -0.522159821 1
185 -0.13 -0.174053274 1
185 0.1 0.174053274 1
185 1.52 0.522159821 1
185 0.87 0.870266368 1
185 0.94 1.218372915 1
185 -0.63 1.566479463 1
186 1.9 -1.566479463 -1
186 -0.79 -1.218372915 -1
186 0.26 -0.870266368 -1
186 1.4 -0.522159821 -1
186 -1.51 -0.174053274 -1
186 -0.43 0.174053274 -1
186 -0.11 0.522159821 -1
186 -0.38 0.870266368 -1
186 -0.32 1.218372915 -1
186 -0.03 1.566479463 -1
187 -1.45 -1.566479463 -1
187 0.4 -1.218372915 -1
187 0.31 -0.870266368 -1
187 0.45 -0.522159821 -1
187 -0.71 -0.174053274 -1
187 1.24 0.174053274 -1
187 -1.87 0.522159821 -1
187 0.45 0.870266368 -1
187 0.64 1.218372915 -1
187 0.54 1.566479463 -1
188 -1.77 -1.566479463 -1
188 -1.22 -1.218372915 -1
188 -0.88 -0.870266368 -1
188 0.9 -0.522159821 -1
188 0.76 -0.174053274 -1
188 1.1 0.174053274 -1
188 0.9 0.522159821 -1
188 0.19 0.870266368 -1
188 -0.31 1.218372915 -1
188 0.32 1.566479463 -1
189 -1.74 -1.566479463 -1
189 -0.01 -1.218372915 -1
189 0.57 -0.870266368 -1
189 0.16 -0.522159821 -1
189 0.54 -0.174053274 -1
189 -0.79 0.174053274 -1
189 0.62 0.522159821 -1
189 -0.59 0.870266368 -1
189 1.88 1.218372915 -1
189 -0.65 1.566479463 -1
190 1.78 -1.566479463 1
190 0.18 -1.218372915 1
190 0 -0.870266368 1
190 0.48 -0.522159821 1
190 -1.02 -0.174053274 1
190 -0.53 0.174053274 1
190 -1.89 0.522159821 1
190 -0.06 0.870266368 1
190 0.36 1.218372915 1
190 0.71 1.566479463 1
191 -1.16 -1.566479463 1
191 1.47 -1.218372915 1
191 0.69 -0.870266368 1
191 0.69 -0.522159821 1
191 -1.33 -0.174053274 1
191 -0.4 0.174053274 1
191 0.87 0.522159821 1
191 0.75 0.870266368 1
191 -0.96 1.218372915 1
191 -0.61 1.566479463 1
192 -1.13 -1.566479463 -1
192 -0.06 -1.218372915 -1
192 -0.11 -0.870266368 -1
192 0.68 -0.522159821 -1
192 1.68 -0.174053274 -1
192 -1.2 0.174053274 -1
192 0.69 0.522159821 -1
192 1.02 0.870266368 -1
192 -1.13 1.218372915 -1
192 -0.43 1.566479463 -1
193 -2.01 -1.566479463 -1
193 -0.25 -1.218372915 -1
193 0.04 -0.870266368 -1
193 1.09 -0.522159821 -1
193 1.68 -0.174053274 -1
193 -0.08 0.174053274 -1
193 0.51 0.522159821 -1
193 -0.08 0.870266368 -1
193 -0.78 1.218372915 -1
193 -0.13 1.566479463 -1
194 -0.91 -1.566479463 1
194 -0.12 -1.218372915 1
194 0.17 -0.870266368 1
194 0.49 -0.522159821 1
194 1.33 -0.174053274 1
194 0.49 0.174053274 1
194 -0.46 0.522159821 1
194 -1.6 0.870266368 1
194 -0.91 1.218372915 1
194 1.51 1.566479463 1
195 1.63 -1.566479463 1
195 -0.68 -1.218372915 1
195 0.37 -0.870266368 1
195 1.68 -0.522159821 1
195 -0.42 -0.174053274 1
195 0.4 0.174053274 1
195 -0.95 0.522159821 1
195 -0.82 0.870266368 1
195 -0.24 1.218372915 1
195 -0.97 1.566479463 1
196 -0.52 -1.566479463 1
196 0.8 -1.218372915 1
196 -0.22 -0.870266368 1
196 1.76 -0.522159821 1
196 0.32 -0.174053274 1
196 0.77 0.174053274 1
196 0.45 0.522159821 1
196 -0.79 0.870266368 1
196 -1.47 1.218372915 1
196 -1.11 1.566479463 1
197 -0.06 -1.566479463 1
197 0.04 -1.218372915 1
197 2.06 -0.870266368 1
197 -0.86 -0.522159821 1
197 0.92 -0.174053274 1
197 -1.15 0.174053274 1
197 -0.72 0.522159821 1
197 -0.37 0.870266368 1
197 -0.69 1.218372915 1
197 0.84 1.566479463 1
198 0.49 -1.566479463 1
198 0.4 -1.218372915 1
198 -0.27 -0.870266368 1
198 1.82 -0.522159821 1
198 0.09 -0.174053274 1
198 -1.28 0.174053274 1
198 -1.58 0.522159821 1
198 -0.61 0.870266368 1
198 0.12 1.218372915 1
198 0.82 1.566479463 1
199 0.05 -1.566479463 1
199 1.41 -1.218372915 1
199 0.23 -0.870266368 1
199 0.23 -0.522159821 1
199 1.45 -0.174053274 1
199 0.25 0.174053274 1
199 -0.32 0.522159821 1
199 -0.52 0.870266368 1
199 -0.87 1.218372915 1
199 -1.9 1.566479463 1
200 -1.03 -1.566479463 -1
200 1.66 -1.218372915 -1
200 -0.31 -0.870266368 -1
200 -1.51 -0.522159821 -1
200 0.06 -0.174053274 -1
200 0.16 0.174053274 -1
200 1.43 0.522159821 -1
200 -0.69 0.870266368 -1
200 -0.23 1.218372915 -1
200 0.46 1.566479463 -1
201 -0.51 -1.566479463 -1
201 -0.89 -1.218372915 -1
201 0.49 -0.870266368 -1
201 -0.79 -0.522159821 -1
201 0.14 -0.174053274 -1
201 0.27 0.174053274 -1
201 0.2 0.522159821 -1
201 0.75 0.870266368 -1
201 1.95 1.218372915 -1
201 -1.61 1.566479463 -1
202 0.02 -1.566479463 -1
202 -0.94 -1.218372915 -1
202 -0.29 -0.870266368 -1
202 0.91 -0.522159821 -1
202 -1.06 -0.174053274 -1
202 2.26 0.174053274 -1
202 -0.54 0.522159821 -1
202 0.11 0.870266368 -1
202 0.3 1.218372915 -1
202 -0.76 1.566479463 -1
203 -0.63 -1.566479463 1
203 -1.97 -1.218372915 1
203 0.82 -0.870266368 1
203 0.23 -0.522159821 1
203 1.17 -0.174053274 1
203 0.12 0.174053274 1
203 1.09 0.522159821 1
203 0.57 0.870266368 1
203 -0.47 1.218372915 1
203 -0.93 1.566479463 1
204 0.85 -1.566479463 1
204 -0.93 -1.218372915 1
204 -0.85 -0.870266368 1
204 0.07 -0.522159821 1
204 -0.12 -0.174053274 1
204 -0.49 0.174053274 1
204 -0.68 0.522159821 1
204 1.99 0.870266368 1
204 1.08 1.218372915 1
204 -0.91 1.566479463 1
205 -1.5 -1.566479463 -1
205 1.4 -1.218372915 -1
205 0.82 -0.870266368 -1
205 -0.41 -0.522159821 -1
205 -0.19 -0.174053274 -1
205 -0.06 0.174053274 -1
205 -1.31 0.522159821 -1
205 0.04 0.870266368 -1
205 -0.25 1.218372915 -1
205 1.46 1.566479463 -1
206 -1.23 -1.566479463 1
206 0.66 -1.218372915 1
206 -0.49 -0.870266368 1
206 0.69 -0.522159821 1
206 0.86 -0.174053274 1
206 -0.14 0.174053274 1
206 1.39 0.522159821 1
206 0.72 0.870266368 1
206 -1.45 1.218372915 1
206 -1.02 1.566479463 1
207 0.28 -1.566479463 1
207 0.06 -1.218372915 1
207 -2.35 -0.870266368 1
207 -0.55 -0.522159821 1
207 0.06 -0.174053274 1
207 0.43 0.174053274 1
207 1.58 0.522159821 1
207 0.3 0.870266368 1
207 0.47 1.218372915 1
207 -0.29 1.566479463 1
208 -1.72 -1.566479463 -1
208 -1.44 -1.218372915 -1
208 0.03 -0.870266368 -1
208 -0.42 -0.522159821 -1
208 -0.28 -0.174053274 -1
208 0.38 0.174053274 -1
208 1.22 0.522159821 -1
208 1.24 0.870266368 -1
208 0.61 1.218372915 -1
208 0.38 1.566479463 -1
209 -0.92 -1.566479463 -1
209 -1.22 -1.218372915 -1
209 -1.3 -0.870266368 -1
209 -0.16 -0.522159821 -1
209 0.9 -0.174053274 -1
209 0.48 0.174053274 -1
209 1.08 0.522159821 -1
209 1.5 0.870266368 -1
209 0.29 1.218372915 -1
209 -0.66 1.566479463 -1
210 -1.47 -1.566479463 -1
210 0.32 -1.218372915 -1
210 0.6 -0.870266368 -1
210 -1.31 -0.522159821 -1
210 0.68 -0.174053274 -1
210 1.37 0.174053274 -1
210 0.76 0.522159821 -1
210 0.37 0.870266368 -1
210 -0.05 1.218372915 -1
210 -1.26 1.566479463 -1
211 -0.62 -1.566479463 -1
211 -1.35 -1.218372915 -1
211 -0.08 -0.870266368 -1
211 0.45 -0.522159821 -1
211 1.73 -0.174053274 -1
211 1.04 0.174053274 -1
211 0.63 0.522159821 -1
211 0.23 0.870266368 -1
211 -0.95 1.218372915 -1
211 -1.08 1.566479463 -1
212 -0.43 -1.566479463 -1
212 0.42 -1.218372915 -1
212 1.19 -0.870266368 -1
212 1.11 -0.522159821 -1
212 0.48 -0.174053274 -1
212 -1.67 0.174053274 -1
212 -1.47 0.522159821 -1
212 -0.37 0.870266368 -1
212 0.8 1.218372915 -1
212 -0.05 1.566479463 -1
213 1.54 -1.566479463 -1
213 -0.29 -1.218372915 -1
213 0.02 -0.870266368 -1
213 -1.49 -0.522159821 -1
213 -0.92 -0.174053274 -1
213 1.38 0.174053274 -1
213 0.7 0.522159821 -1
213 0.34 0.870266368 -1
213 -0.34 1.218372915 -1
213 -0.92 1.566479463 -1
214 0.99 -1.566479463 -1
214 -0.57 -1.218372915 -1
214 -1.19 -0.870266368 -1
214 0.68 -0.522159821 -1
214 -0.68 -0.174053274 -1
214 0.36 0.174053274 -1
214 1.89 0.522159821 -1
214 0.29 0.870266368 -1
214 -0.99 1.218372915 -1
214 -0.78 1.566479463 -1
215 -0.87 -1.566479463 -1
215 -0.28 -1.218372915 -1
215 -0.03 -0.870266368 -1
215 1.11 -0.522159821 -1
215 0.52 -0.174053274 -1
215 -1.73 0.174053274 -1
215 0.95 0.522159821 -1
215 1.33 0.870266368 -1
215 -0.99 1.218372915 -1
215 0 1.566479463 -1
216 -1.03 -1.566479463 -1
216 -0.76 -1.218372915 -1
216 -0.05 -0.870266368 -1
216 -0.32 -0.522159821 -1
216 0.31 -0.174053274 -1
216 0.05 0.174053274 -1
216 0.93 0.522159821 -1
216 2.02 0.870266368 -1
216 -1.45 1.218372915 -1
216 0.3 1.566479463 -1
217 -1.3 -1.566479463 -1
217 -1.44 -1.218372915 -1
217 0.74 -0.870266368 -1
217 1.33 -0.522159821 -1
217 0.8 -0.174053274 -1
217 -0.74 0.174053274 -1
217 -0.01 0.522159821 -1
217 -0.82 0.870266368 -1
217 0.77 1.218372915 -1
217 0.69 1.566479463 -1
218 0.07 -1.566479463 1
218 1.63 -1.218372915 1
218 -1.68 -0.870266368 1
218 0.01 -0.522159821 1
218 0.01 -0.174053274 1
218 -0.85 0.174053274 1
218 -0.35 0.522159821 1
218 -0.38 0.870266368 1
218 1.58 1.218372915 1
218 -0.04 1.566479463 1
219 0.96 -1.566479463 -1
219 0.7 -1.218372915 -1
219 -0.86 -0.870266368 -1
219 -0.38 -0.522159821 -1
219 -1.48 -0.174053274 -1
219 -0.98 0.174053274 -1
219 0.12 0.522159821 -1
219 1.56 0.870266368 -1
219 0.91 1.218372915 -1
219 -0.55 1.566479463 -1
220 -1.15 -1.566479463 -1
220 -0.34 -1.218372915 -1
220 1.14 -0.870266368 -1
220 -0.53 -0.522159821 -1
220 1.84 -0.174053274 -1
220 0.13 0.174053274 -1
220 0.87 0.522159821 -1
220 -1.11 0.870266368 -1
220 -0.76 1.218372915 -1
220 -0.07 1.566479463 -1
221 -0.61 -1.566479463 1
221 2.15 -1.218372915 1
221 0.92 -0.870266368 1
221 0.1 -0.522159821 1
221 -1.26 -0.174053274 1
221 0.41 0.174053274 1
221 -0.83 0.522159821 1
221 -0.61 0.870266368 1
221 0.25 1.218372915 1
221 -0.51 1.566479463 1
222 1.24 -1.566479463 1
222 1.08 -1.218372915 1
222 0.2 -0.870266368 1
222 -1 -0.522159821 1
222 0.99 -0.174053274 1
222 0.74 0.174053274 1
222 0 0.522159821 1
222 -1.09 0.870266368 1
222 -1.38 1.218372915 1
222 -0.79 1.566479463 1
223 0.94 -1.566479463 1
223 1.01 -1.218372915 1
223 0.24 -0.870266368 1
223 -1.18 -0.522159821 1
223 -0.73 -0.174053274 1
223 -0.83 0.174053274 1
223 -1.02 0.522159821 1
223 0.09 0.870266368 1
223 -0.33 1.218372915 1
223 1.81 1.566479463 1
224 1.09 -1.566479463 1
224 -0.76 -1.218372915 1
224 0.49 -0.870266368 1
224 1.53 -0.522159821 1
224 -1.12 -0.174053274 1
224 0.63 0.174053274 1
224 -1.04 0.522159821 1
224 -1.06 0.870266368 1
224 0.73 1.218372915 1
224 -0.48 1.566479463 1
225 -1.89 -1.566479463 1
225 1.02 -1.218372915 1
225 -0.54 -0.870266368 1
225 -0.43 -0.522159821 1
225 0.18 -0.174053274 1
225 0.42 0.174053274 1
225 1.28 0.522159821 1
225 1.15 0.870266368 1
225 -0.67 1.218372915 1
225 -0.52 1.566479463 1
226 1.41 -1.566479463 1
226 0.73 -1.218372915 1
226 0.01 -0.870266368 1
226 0.92 -0.522159821 1
226 0.72 -0.174053274 1
226 -1.08 0.174053274 1
226 0.05 0.522159821 1
226 -1.8 0.870266368 1
226 -0.12 1.218372915 1
226 -0.83 1.566479463 1
227 -0.18 -1.566479463 1
227 -0.93 -1.218372915 1
227 -1.14 -0.870266368 1
227 -0.53 -0.522159821 1
227 -0.94 -0.174053274 1
227 -0.3 0.174053274 1
227 0.9 0.522159821 1
227 0.79 0.870266368 1
227 2 1.218372915 1
227 0.33 1.566479463 1
228 -0.97 -1.566479463 1
228 -0.19 -1.218372915 1
228 -0.63 -0.870266368 1
228 0.63 -0.522159821 1
228 0.92 -0.174053274 1
228 0.69 0.174053274 1
228 -1.39 0.522159821 1
228 -0.83 0.870266368 1
228 -0.05 1.218372915 1
228 1.81 1.566479463 1
229 -0.52 -1.566479463 1
229 -0.45 -1.218372915 1
229 0.03 -0.870266368 1
229 -0.2 -0.522159821 1
229 -0.03 -0.174053274 1
229 -1.46 0.174053274 1
229 -0.12 0.522159821 1
229 -0.42 0.870266368 1
229 0.85 1.218372915 1
229 2.33 1.566479463 1
230 0.12 -1.566479463 -1
230 0.65 -1.218372915 -1
230 -0.78 -0.870266368 -1
230 -1.05 -0.522159821 -1
230 -0.25 -0.174053274 -1
230 -0.36 0.174053274 -1
230 -0.25 0.522159821 -1
230 -0.09 0.870266368 -1
230 -0.52 1.218372915 -1
230 2.52 1.566479463 -1
231 -1.59 -1.566479463 -1
231 -1.07 -1.218372915 -1
231 0.42 -0.870266368 -1
231 0.75 -0.522159821 -1
231 1.49 -0.174053274 -1
231 -0.89 0.174053274 -1
231 0.61 0.522159821 -1
231 0.28 0.870266368 -1
231 0.75 1.218372915 -1
231 -0.75 1.566479463 -1
232 -0.86 -1.566479463 1
232 -0.8 -1.218372915 1
232 0.3 -0.870266368 1
232 -0.51 -0.522159821 1
232 -0.81 -0.174053274 1
232 -0.24 0.174053274 1
232 -0.78 0.522159821 1
232 2.19 0.870266368 1
232 0.64 1.218372915 1
232 0.87 1.566479463 1
233 0.29 -1.566479463 1
233 -0.43 -1.218372915 1
233 -0.42 -0.870266368 1
233 0.4 -0.522159821 1
233 2.01 -0.174053274 1
233 0.63 0.174053274 1
233 -0.42 0.522159821 1
233 -0.38 0.870266368 1
233 0.22 1.218372915 1
233 -1.9 1.566479463 1
234 -0.7 -1.566479463 1
234 -0.93 -1.218372915 1
234 -0.1 -0.870266368 1
234 -1.59 -0.522159821 1
234 1.22 -0.174053274 1
234 1.05 0.174053274 1
234 0.47 0.522159821 1
234 1.22 0.870266368 1
234 -0.87 1.218372915 1
234 0.24 1.566479463 1
235 -0.43 -1.566479463 -1
235 0.11 -1.218372915 -1
235 0.55 -0.870266368 -1
235 -1.9 -0.522159821 -1
235 -0.43 -0.174053274 -1
235 0.82 0.174053274 -1
235 1.63 0.522159821 -1
235 -1.05 0.870266368 -1
235 0.33 1.218372915 -1
235 0.38 1.566479463 -1
236 -0.99 -1.566479463 1
236 -0.44 -1.218372915 1
236 -0.53 -0.870266368 1
236 0.37 -0.522159821 1
236 -0.2 -0.174053274 1
236 -1.39 0.174053274 1
236 1.56 0.522159821 1
236 -0.44 0.870266368 1
236 0.46 1.218372915 1
236 1.61 1.566479463 1
237 0.71 -1.566479463 -1
237 -0.49 -1.218372915 -1
237 -1.54 -0.870266368 -1
237 -0.65 -0.522159821 -1
237 0.4 -0.174053274 -1
237 -0.13 0.174053274 -1
237 -0.91 0.522159821 -1
237 1.19 0.870266368 -1
237 1.71 1.218372915 -1
237 -0.28 1.566479463 -1
238 -1.32 -1.566479463 1
238 1.39 -1.218372915 1
238 0.61 -0.870266368 1
238 -0.85 -0.522159821 1
238 -1.49 -0.174053274 1
238 -0.19 0.174053274 1
238 0.09 0.522159821 1
238 1.34 0.870266368 1
238 0.42 1.218372915 1
238 0 1.566479463 1
239 -1.1 -1.566479463 1
239 -0.7 -1.218372915 1
239 0.13 -0.870266368 1
239 -0.94 -0.522159821 1
239 0.05 -0.174053274 1
239 -0.03 0.174053274 1
239 -1.07 0.522159821 1
239 1.32 0.870266368 1
239 1.8 1.218372915 1
239 0.53 1.566479463 1
240 0.89 -1.566479463 -1
240 0.89 -1.218372915 -1
240 -1.24 -0.870266368 -1
240 -0.22 -0.522159821 -1
240 -1.44 -0.174053274 -1
240 0.07 0.174053274 -1
240 -0.76 0.522159821 -1
240 0.17 0.870266368 -1
240 1.77 1.218372915 -1
240 -0.13 1.566479463 -1
241 -0.51 -1.566479463 -1
241 1.46 -1.218372915 -1
241 -0.28 -0.870266368 -1
241 0.29 -0.522159821 -1
241 0.32 -0.174053274 -1
241 0.21 0.174053274 -1
241 -2.21 0.522159821 -1
241 -0.17 0.870266368 -1
241 1.16 1.218372915 -1
241 -0.28 1.566479463 -1
242 -1.08 -1.566479463 -1
242 0.75 -1.218372915 -1
242 -0.3 -0.870266368 -1
242 0.6 -0.522159821 -1
242 -0.28 -0.174053274 -1
242 -1.78 0.174053274 -1
242 -0.51 0.522159821 -1
242 0.52 0.870266368 -1
242 1.71 1.218372915 -1
242 0.37 1.566479463 -1
243 -1.25 -1.566479463 -1
243 0.53 -1.218372915 -1
243 -2.07 -0.870266368 -1
243 1.15 -0.522159821 -1
243 0.78 -0.174053274 -1
243 0.43 0.174053274 -1
243 -0.5 0.522159821 -1
243 0.6 0.870266368 -1
243 0.39 1.218372915 -1
243 -0.06 1.566479463 -1
244 -0.92 -1.566479463 -1
244 0.38 -1.218372915 -1
244 -1.34 -0.870266368 -1
244 -0.82 -0.522159821 -1
244 0.07 -0.174053274 -1
244 2.03 0.174053274 -1
244 0.55 0.522159821 -1
244 -0.41 0.870266368 -1
244 -0.41 1.218372915 -1
244 0.88 1.566479463 -1
245 -0.35 -1.566479463 -1
245 0.61 -1.218372915 -1
245 -0.03 -0.870266368 -1
245 0.06 -0.522159821 -1
245 -1.09 -0.174053274 -1
245 -0.58 0.174053274 -1
245 1.3 0.522159821 -1
245 0.11 0.870266368 -1
245 -1.64 1.218372915 -1
245 1.62 1.566479463 -1
246 -1.16 -1.566479463 1
246 -0.66 -1.218372915 1
246 -1.18 -0.870266368 1
246 0.08 -0.522159821 1
246 0.37 -0.174053274 1
246 0.08 0.174053274 1
246 0.23 0.522159821 1
246 -0.54 0.870266368 1
246 2.25 1.218372915 1
246 0.52 1.566479463 1
247 0.33 -1.566479463 -1
247 -0.11 -1.218372915 -1
247 0.23 -0.870266368 -1
247 -0.95 -0.522159821 -1
247 -0.32 -0.174053274 -1
247 -0.29 0.174053274 -1
247 -0.63 0.522159821 -1
247 -1.23 0.870266368 -1
247 0.67 1.218372915 -1
247 2.32 1.566479463 -1
248 -1.04 -1.566479463 1
248 -0.45 -1.218372915 1
248 -0.69 -0.870266368 1
248 0.95 -0.522159821 1
248 -0.06 -0.174053274 1
248 1.26 0.174053274 1
248 -1.35 0.522159821 1
248 1.68 0.870266368 1
248 -0.27 1.218372915 1
248 -0.03 1.566479463 1
249 -1.04 -1.566479463 -1
249 0.39 -1.218372915 -1
249 -0.35 -0.870266368 -1
249 -1 -0.522159821 -1
249 -0.19 -0.174053274 -1
249 -1.23 0.174053274 -1
249 -0.21 0.522159821 -1
249 0.57 0.870266368 -1
249 1.6 1.218372915 -1
249 1.47 1.566479463 -1
250 1.39 -1.566479463 -1
250 -0.75 -1.218372915 -1
250 -0.68 -0.870266368 -1
250 0.32 -0.522159821 -1
250 -0.68 -0.174053274 -1
250 1.67 0.174053274 -1
250 0.31 0.522159821 -1
250 0.03 0.870266368 -1
250 -1.62 1.218372915 -1
250 0.01 1.566479463 -1
251 -0.69 -1.566479463 -1
251 -0.32 -1.218372915 -1
251 -1.12 -0.870266368 -1
251 0.06 -0.522159821 -1
251 0 -0.174053274 -1
251 1.83 0.174053274 -1
251 -1.12 0.522159821 -1
251 -0.64 0.870266368 -1
251 0.7 1.218372915 -1
251 1.29 1.566479463 -1
252 -1.5 -1.566479463 -1
252 0.37 -1.218372915 -1
252 1.03 -0.870266368 -1
252 0.95 -0.522159821 -1
252 0.65 -0.174053274 -1
252 -0.67 0.174053274 -1
252 -0.84 0.522159821 -1
252 -1.11 0.870266368 -1
252 -0.21 1.218372915 -1
252 1.33 1.566479463 -1
253 -1.62 -1.566479463 1
253 -1.08 -1.218372915 1
253 0.81 -0.870266368 1
253 -0.11 -0.522159821 1
253 0.04 -0.174053274 1
253 1.27 0.174053274 1
253 1.41 0.522159821 1
253 0.46 0.870266368 1
253 -0.45 1.218372915 1
253 -0.73 1.566479463 1
254 -0.36 -1.566479463 1
254 -1.29 -1.218372915 1
254 -0.52 -0.870266368 1
254 0.1 -0.522159821 1
254 0.5 -0.174053274 1
254 -0.68 0.174053274 1
254 0.5 0.522159821 1
254 0.54 0.870266368 1
254 -0.97 1.218372915 1
254 2.17 1.566479463 1
255 -0.57 -1.566479463 1
255 -0.76 -1.218372915 1
255 -1.75 -0.870266368 1
255 0.3 -0.522159821 1
255 -0.5 -0.174053274 1
255 -0.1 0.174053274 1
255 1.74 0.522159821 1
255 0.07 0.870266368 1
255 1.25 1.218372915 1
255 0.32 1.566479463 1
256 -1.79 -1.566479463 -1
256 -0.68 -1.218372915 -1
256 1.05 -0.870266368 -1
256 -0.86 -0.522159821 -1
256 -0.1 -0.174053274 -1
256 0.96 0.174053274 -1
256 -0.84 0.522159821 -1
256 0.92 0.870266368 -1
256 0.92 1.218372915 -1
256 0.43 1.566479463 -1
257 0.12 -1.566479463 -1
257 -0.72 -1.218372915 -1
257 0.77 -0.870266368 -1
257 1.75 -0.522159821 -1
257 -0.76 -0.174053274 -1
257 0.12 0.174053274 -1
257 -1.28 0.522159821 -1
257 1.24 0.870266368 -1
257 -1 1.218372915 -1
257 -0.25 1.566479463 -1
258 -2.17 -1.566479463 -1
258 0.15 -1.218372915 -1
258 -0.1 -0.870266368 -1
258 -1.24 -0.522159821 -1
258 0.32 -0.174053274 -1
258 0.23 0.174053274 -1
258 1.06 0.522159821 -1
258 0.96 0.870266368 -1
258 0.71 1.218372915 -1
258 0.07 1.566479463 -1
259 -1.02 -1.566479463 -1
259 1.2 -1.218372915 -1
259 0.89 -0.870266368 -1
259 -0.73 -0.522159821 -1
259 -0.75 -0.174053274 -1
259 -0.33 0.174053274 -1
259 0.54 0.522159821 -1
259 -1.28 0.870266368 -1
259 -0.12 1.218372915 -1
259 1.6 1.566479463 -1
260 -0.15 -1.566479463 1
260 -1.19 -1.218372915 1
260 -2.16 -0.870266368 1
260 0.98 -0.522159821 1
260 0.51 -0.174053274 1
260 -0.25 0.174053274 1
260 1.04 0.522159821 1
260 0.3 0.870266368 1
260 0.51 1.218372915 1
260 0.4 1.566479463 1
261 -1.62 -1.566479463 -1
261 -0.67 -1.218372915 -1
261 -0.23 -0.870266368 -1
261 0.5 -0.522159821 -1
261 -0.6 -0.174053274 -1
261 -0.54 0.174053274 -1
261 0.47 0.522159821 -1
261 0.38 0.870266368 -1
261 0.17 1.218372915 -1
261 2.14 1.566479463 -1
262 1 -1.566479463 -1
262 -1.13 -1.218372915 -1
262 -0.22 -0.870266368 -1
262 -1.97 -0.522159821 -1
262 0.28 -0.174053274 -1
262 0.2 0.174053274 -1
262 0.51 0.522159821 -1
262 0.32 0.870266368 -1
262 -0.44 1.218372915 -1
262 1.46 1.566479463 -1
263 0.38 -1.566479463 1
263 -0.65 -1.218372915 1
263 -1.23 -0.870266368 1
263 -0.51 -0.522159821 1
263 0.81 -0.174053274 1
263 0.67 0.174053274 1
263 1.82 0.522159821 1
263 -0.98 0.870266368 1
263 0.63 1.218372915 1
263 -0.94 1.566479463 1
264 -0.45 -1.566479463 -1
264 0.36 -1.218372915 -1
264 2.1 -0.870266368 -1
264 0.15 -0.522159821 -1
264 0.07 -0.174053274 -1
264 0.12 0.174053274 -1
264 -1.99 0.522159821 -1
264 -0.42 0.870266368 -1
264 0.2 1.218372915 -1
264 -0.14 1.566479463 -1
265 1.33 -1.566479463 1
265 -0.9 -1.218372915 1
265 -1.44 -0.870266368 1
265 1.08 -0.522159821 1
265 0.69 -0.174053274 1
265 -0.39 0.174053274 1
265 0.36 0.522159821 1
265 0.78 0.870266368 1
265 -0.21 1.218372915 1
265 -1.32 1.566479463 1
266 -1.1 -1.566479463 1
266 0.7 -1.218372915 1
266 -0.45 -0.870266368 1
266 0.13 -0.522159821 1
266 -0.55 -0.174053274 1
266 -1.37 0.174053274 1
266 1.13 0.522159821 1
266 0.23 0.870266368 1
266 1.81 1.218372915 1
266 -0.53 1.566479463 1
267 -0.08 -1.566479463 1
267 0.19 -1.218372915 1
267 1.37 -0.870266368 1
267 0.59 -0.522159821 1
267 0.66 -0.174053274 1
267 0.07 0.174053274 1
267 0.69 0.522159821 1
267 -0.13 0.870266368 1
267 -1.4 1.218372915 1
267 -1.96 1.566479463 1
268 -0.72 -1.566479463 1
268 -1.16 -1.218372915 1
268 -0.5 -0.870266368 1
268 0.71 -0.522159821 1
268 -1.05 -0.174053274 1
268 0.62 0.174053274 1
268 2.18 0.522159821 1
268 0.15 0.870266368 1
268 0.09 1.218372915 1
268 -0.32 1.566479463 1
269 -0.95 -1.566479463 1
269 1.76 -1.218372915 1
269 0.58 -0.870266368 1
269 0.15 -0.522159821 1
269 -0.39 -0.174053274 1
269 1.36 0.174053274 1
269 -0.2 0.522159821 1
269 -0.02 0.870266368 1
269 -1.04 1.218372915 1
269 -1.24 1.566479463 1
270 0.58 -1.566479463 1
270 -0.28 -1.218372915 1
270 1.32 -0.870266368 1
270 -0.7 -0.522159821 1
270 -0.04 -0.174053274 1
270 -1.04 0.174053274 1
270 -1.74 0.522159821 1
270 1.19 0.870266368 1
270 0.9 1.218372915 1
270 -0.18 1.566479463 1
271 -2.41 -1.566479463 1
271 0.06 -1.218372915 1
271 0.81 -0.870266368 1
271 0.27 -0.522159821 1
271 0.2 -0.174053274 1
271 0.28 0.174053274 1
271 -0.43 0.522159821 1
271 0.93 0.870266368 1
271 0.93 1.218372915 1
271 -0.64 1.566479463 1
272 0.3 -1.566479463 -1
272 -0.92 -1.218372915 -1
272 -0.41 -0.870266368 -1
272 1.65 -0.522159821 -1
272 0.02 -0.174053274 -1
272 -0.39 0.174053274 -1
272 1.41 0.522159821 -1
272 -1.28 0.870266368 -1
272 0.61 1.218372915 -1
272 -1.01 1.566479463 -1
273 -1.55 -1.566479463 -1
273 -0.52 -1.218372915 -1
273 -0.27 -0.870266368 -1
273 -0.23 -0.522159821 -1
273 -0.01 -0.174053274 -1
273 0.49 0.174053274 -1
273 -0.77 0.522159821 -1
273 0.2 0.870266368 -1
273 2.28 1.218372915 -1
273 0.38 1.566479463 -1
274 -1.17 -1.566479463 -1
274 0.49 -1.218372915 -1
274 -0.66 -0.870266368 -1
274 0.37 -0.522159821 -1
274 1.49 -0.174053274 -1
274 -0.96 0.174053274 -1
274 1.52 0.522159821 -1
274 -0.84 0.870266368 -1
274 0.43 1.218372915 -1
274 -0.69 1.566479463 -1
275 -1.89 -1.566479463 1
275 -0.04 -1.218372915 1
275 0.05 -0.870266368 1
275 0.63 -0.522159821 1
275 -0.3 -0.174053274 1
275 -0.24 0.174053274 1
275 0.6 0.522159821 1
275 2.01 0.870266368 1
275 -0.69 1.218372915 1
275 -0.13 1.566479463 1
276 -0.34 -1.566479463 -1
276 0.99 -1.218372915 -1
276 -1.04 -0.870266368 -1
276 1.05 -0.522159821 -1
276 -1.29 -0.174053274 -1
276 0.72 0.174053274 -1
276 0.74 0.522159821 -1
276 0.66 0.870266368 -1
276 -1.6 1.218372915 -1
276 0.12 1.566479463 -1
277 -0.67 -1.566479463 -1
277 -1.85 -1.218372915 -1
277 0.71 -0.870266368 -1
277 0.19 -0.522159821 -1
277 -0.15 -0.174053274 -1
277 1.76 0.174053274 -1
277 0.37 0.522159821 -1
277 0.65 0.870266368 -1
277 -0.05 1.218372915 -1
277 -0.95 1.566479463 -1
278 -0.89 -1.566479463 -1
278 -0.93 -1.218372915 -1
278 -0.67 -0.870266368 -1
278 -0.87 -0.522159821 -1
278 0.94 -0.174053274 -1
278 -0.82 0.174053274 -1
278 1.29 0.522159821 -1
278 0.72 0.870266368 -1
278 -0.3 1.218372915 -1
278 1.53 1.566479463 -1
279 -0.02 -1.566479463 -1
279 0.26 -1.218372915 -1
279 0.43 -0.870266368 -1
279 -0.02 -0.522159821 -1
279 -1.03 -0.174053274 -1
279 0.38 0.174053274 -1
279 0.54 0.522159821 -1
279 2 0.870266368 -1
279 -1.3 1.218372915 -1
279 -1.25 1.566479463 -1
280 -1.06 -1.566479463 1
280 -0.63 -1.218372915 1
280 -1.01 -0.870266368 1
280 -1.44 -0.522159821 1
280 1.48 -0.174053274 1
280 0.3 0.174053274 1
280 -0.1 0.522159821 1
280 0.83 0.870266368 1
280 0.6 1.218372915 1
280 1.03 1.566479463 1
281 -1.31 -1.566479463 1
281 -0.39 -1.218372915 1
281 -1.46 -0.870266368 1
281 0.99 -0.522159821 1
281 0.66 -0.174053274 1
281 0.75 0.174053274 1
281 -0.37 0.522159821 1
281 -0.9 0.870266368 1
281 1.15 1.218372915 1
281 0.86 1.566479463 1
282 -0.56 -1.566479463 1
282 0.49 -1.218372915 1
282 1.74 -0.870266368 1
282 -1.29 -0.522159821 1
282 -0.11 -0.174053274 1
282 0.71 0.174053274 1
282 -1.65 0.522159821 1
282 -0.23 0.870266368 1
282 0.25 1.218372915 1
282 0.65 1.566479463 1
283 -0.8 -1.566479463 1
283 -0.94 -1.218372915 1
283 -0.11 -0.870266368 1
283 -1 -0.522159821 1
283 0.47 -0.174053274 1
283 1.87 0.174053274 1
283 0.96 0.522159821 1
283 0.77 0.870266368 1
283 -1.11 1.218372915 1
283 -0.11 1.566479463 1
284 -0.29 -1.566479463 -1
284 -0.42 -1.218372915 -1
284 0.18 -0.870266368 -1
284 -2.01 -0.522159821 -1
284 -1.14 -0.174053274 -1
284 0.4 0.174053274 -1
284 1.33 0.522159821 -1
284 0.94 0.870266368 -1
284 0.72 1.218372915 -1
284 0.29 1.566479463 -1
285 1.04 -1.566479463 1
285 0.15 -1.218372915 1
285 -0.46 -0.870266368 1
285 0.08 -0.522159821 1
285 0.27 -0.174053274 1
285 1.19 0.174053274 1
285 -1.83 0.522159821 1
285 0.87 0.870266368 1
285 0.12 1.218372915 1
285 -1.44 1.566479463 1
286 0.53 -1.566479463 1
286 1.6 -1.218372915 1
286 -0.69 -0.870266368 1
286 -0.05 -0.522159821 1
286 0.21 -0.174053274 1
286 0.81 0.174053274 1
286 0.59 0.522159821 1
286 -1.79 0.870266368 1
286 -1.19 1.218372915 1
286 -0.01 1.566479463 1
287 -1.14 -1.566479463 1
287 -1.31 -1.218372915 1
287 -0.91 -0.870266368 1
287 0.01 -0.522159821 1
287 0.89 -0.174053274 1
287 0.51 0.174053274 1
287 -0.96 0.522159821 1
287 1.04 0.870266368 1
287 1.33 1.218372915 1
287 0.55 1.566479463 1
288 -1.77 -1.566479463 -1
288 0.24 -1.218372915 -1
288 -0.28 -0.870266368 -1
288 -1.38 -0.522159821 -1
288 0.63 -0.174053274 -1
288 1.73 0.174053274 -1
288 0.3 0.522159821 -1
288 0.3 0.870266368 -1
288 -0.21 1.218372915 -1
288 0.43 1.566479463 -1
289 -1.39 -1.566479463 1
289 -0.79 -1.218372915 1
289 1.07 -0.870266368 1
289 -1.14 -0.522159821 1
289 -0.27 -0.174053274 1
289 -0.23 0.174053274 1
289 1.11 0.522159821 1
289 -0.32 0.870266368 1
289 0.45 1.218372915 1
289 1.52 1.566479463 1
290 -0.1 -1.566479463 -1
290 -1.71 -1.218372915 -1
290 0.76 -0.870266368 -1
290 -0.14 -0.522159821 -1
290 -0.92 -0.174053274 -1
290 -0.96 0.174053274 -1
290 0.19 0.522159821 -1
290 1.68 0.870266368 -1
290 0.32 1.218372915 -1
290 0.86 1.566479463 -1
291 0.77 -1.566479463 -1
291 0.32 -1.218372915 -1
291 -1.7 -0.870266368 -1
291 0.53 -0.522159821 -1
291 -0.73 -0.174053274 -1
291 -0.57 0.174053274 -1
291 1.01 0.522159821 -1
291 0.28 0.870266368 -1
291 1.3 1.218372915 -1
291 -1.22 1.566479463 -1
292 0.17 -1.566479463 -1
292 -2.07 -1.218372915 -1
292 1.14 -0.870266368 -1
292 0.05 -0.522159821 -1
292 0.43 -0.174053274 -1
292 -0.52 0.174053274 -1
292 1.25 0.522159821 -1
292 -0.69 0.870266368 -1
292 -0.54 1.218372915 -1
292 0.78 1.566479463 -1
293 1.08 -1.566479463 1
293 1.26 -1.218372915 1
293 -1.16 -0.870266368 1
293 1.03 -0.522159821 1
293 0.36 -0.174053274 1
293 -0.13 0.174053274 1
293 0.59 0.522159821 1
293 -1.38 0.870266368 1
293 -1.07 1.218372915 1
293 -0.58 1.566479463 1
294 -1.39 -1.566479463 -1
294 -0.11 -1.218372915 -1
294 -1.14 -0.870266368 -1
294 -0.61 -0.522159821 -1
294 -0.84 -0.174053274 -1
294 1.28 0.174053274 -1
294 0.79 0.522159821 -1
294 1.43 0.870266368 -1
294 -0.04 1.218372915 -1
294 0.62 1.566479463 -1
295 -1.41 -1.566479463 1
295 -1.25 -1.218372915 1
295 -0.32 -0.870266368 1
295 -1.01 -0.522159821 1
295 0.41 -0.174053274 1
295 -0.39 0.174053274 1
295 0.75 0.522159821 1
295 1.07 0.870266368 1
295 1.07 1.218372915 1
295 1.07 1.566479463 1
296 0.22 -1.566479463 1
296 0.8 -1.218372915 1
296 1 -0.870266368 1
296 0.7 -0.522159821 1
296 1.08 -0.174053274 1
296 0.2 0.174053274 1
296 -0.34 0.522159821 1
296 -0.42 0.870266368 1
296 -1.31 1.218372915 1
296 -1.91 1.566479463 1
297 -0.73 -1.566479463 -1
297 1.45 -1.218372915 -1
297 -0.35 -0.870266368 -1
297 0.03 -0.522159821 -1
297 0.24 -0.174053274 -1
297 -0.69 0.174053274 -1
297 0.29 0.522159821 -1
297 0.26 0.870266368 -1
297 1.4 1.218372915 -1
297 -1.89 1.566479463 -1
298 -0.79 -1.566479463 1
298 0.73 -1.218372915 1
298 0.31 -0.870266368 1
298 -0.54 -0.522159821 1
298 0.21 -0.174053274 1
298 -0.59 0.174053274 1
298 1.48 0.522159821 1
298 -1.3 0.870266368 1
298 -1 1.218372915 1
298 1.48 1.566479463 1
299 0.91 -1.566479463 1
299 0.26 -1.218372915 1
299 -0.27 -0.870266368 1
299 -0.2 -0.522159821 1
299 1.07 -0.174053274 1
299 0.45 0.174053274 1
299 -1.75 0.522159821 1
299 1.38 0.870266368 1
299 -0.82 1.218372915 1
299 -1.01 1.566479463 1
300 -1.16 -1.566479463 1
300 -1.05 -1.218372915 1
300 1.84 -0.870266368 1
300 0.17 -0.522159821 1
300 1.46 -0.174053274 1
300 0.15 0.174053274 1
300 -0.3 0.522159821 1
300 -0.28 0.870266368 1
300 0.06 1.218372915 1
300 -0.89 1.566479463 1
301 1.79 -1.566479463 -1
301 0.58 -1.218372915 -1
301 -0.72 -0.870266368 -1
301 -0.54 -0.522159821 -1
301 0.58 -0.174053274 -1
301 -1.2 0.174053274 -1
301 -1.36 0.522159821 -1
301 0.91 0.870266368 -1
301 -0.32 1.218372915 -1
301 0.27 1.566479463 -1
302 -1.11 -1.566479463 -1
302 -1.35 -1.218372915 -1
302 1.23 -0.870266368 -1
302 1.71 -0.522159821 -1
302 0.03 -0.174053274 -1
302 -1.01 0.174053274 -1
302 -0.26 0.522159821 -1
302 0.57 0.870266368 -1
302 0.29 1.218372915 -1
302 -0.09 1.566479463 -1
303 -1.44 -1.566479463 1
303 0.66 -1.218372915 1
303 0.31 -0.870266368 1
303 0.93 -0.522159821 1
303 0.39 -0.174053274 1
303 0.35 0.174053274 1
303 1.12 0.522159821 1
303 0.44 0.870266368 1
303 -1.38 1.218372915 1
303 -1.38 1.566479463 1
304 0.03 -1.566479463 -1
304 -0.39 -1.218372915 -1
304 -0.7 -0.870266368 -1
304 -0.26 -0.522159821 -1
304 -1.89 -0.174053274 -1
304 1.88 0.174053274 -1
304 1.06 0.522159821 -1
304 0.24 0.870266368 -1
304 0.01 1.218372915 -1
304 0.01 1.566479463 -1
305 1.14 -1.566479463 -1
305 -0.95 -1.218372915 -1
305 -0.59 -0.870266368 -1
305 1.09 -0.522159821 -1
305 0.14 -0.174053274 -1
305 0.02 0.174053274 -1
305 -1.15 0.522159821 -1
305 1.14 0.870266368 -1
305 0.65 1.218372915 -1
305 -1.48 1.566479463 -1
306 -0.06 -1.566479463 1
306 -0.32 -1.218372915 1
306 -1.3 -0.870266368 1
306 -1.83 -0.522159821 1
306 0.07 -0.174053274 1
306 -0.1 0.174053274 1
306 0.39 0.522159821 1
306 1.1 0.870266368 1
306 1.45 1.218372915 1
306 0.61 1.566479463 1
307 0.19 -1.566479463 1
307 -0.3 -1.218372915 1
307 -1.27 -0.870266368 1
307 -0.33 -0.522159821 1
307 -0.17 -0.174053274 1
307 -1.27 0.174053274 1
307 1.29 0.522159821 1
307 -0.12 0.870266368 1
307 1.96 1.218372915 1
307 0.03 1.566479463 1
308 -1.17 -1.566479463 1
308 -0.68 -1.218372915 1
308 0.67 -0.870266368 1
308 -0.22 -0.522159821 1
308 0.35 -0.174053274 1
308 2.31 0.174053274 1
308 -0.39 0.522159821 1
308 -0.04 0.870266368 1
308 0.19 1.218372915 1
308 -1.02 1.566479463 1
309 -0.77 -1.566479463 1
309 -0.98 -1.218372915 1
309 1.04 -0.870266368 1
309 1.75 -0.522159821 1
309 -0.39 -0.174053274 1
309 -0.26 0.174053274 1
309 -1.25 0.522159821 1
309 0.99 0.870266368 1
309 -0.57 1.218372915 1
309 0.45 1.566479463 1
310 -1.09 -1.566479463 -1
310 -0.7 -1.218372915 -1
310 1.28 -0.870266368 -1
310 -0.52 -0.522159821 -1
310 0.23 -0.174053274 -1
310 -0.6 0.174053274 -1
310 1.17 0.522159821 -1
310 0.99 0.870266368 -1
310 0.7 1.218372915 -1
310 -1.46 1.566479463 -1
311 0 -1.566479463 1
311 1.79 -1.218372915 1
311 -0.78 -0.870266368 1
311 0.56 -0.522159821 1
311 0.16 -0.174053274 1
311 0.72 0.174053274 1
311 -1 0.522159821 1
311 -0.78 0.870266368 1
311 -1.45 1.218372915 1
311 0.78 1.566479463 1
312 0 -1.566479463 1
312 -0.06 -1.218372915 1
312 -0.74 -0.870266368 1
312 -0.12 -0.522159821 1
312 -0.59 -0.174053274 1
312 1.19 0.174053274 1
312 -1.87 0.522159821 1
312 -0.21 0.870266368 1
312 1.58 1.218372915 1
312 0.81 1.566479463 1
313 -1.47 -1.566479463 -1
313 -1.43 -1.218372915 -1
313 0.76 -0.870266368 -1
313 -0.54 -0.522159821 -1
313 0.12 -0.174053274 -1
313 -0.55 0.174053274 -1
313 0.28 0.522159821 -1
313 0.45 0.870266368 -1
313 1.69 1.218372915 -1
313 0.69 1.566479463 -1
314 -1.93 -1.566479463 -1
314 -0.68 -1.218372915 -1
314 0.82 -0.870266368 -1
314 1.63 -0.522159821 -1
314 -0.19 -0.174053274 -1
314 0.91 0.174053274 -1
314 -0.3 0.522159821 -1
314 -0.41 0.870266368 -1
314 0.5 1.218372915 -1
314 -0.36 1.566479463 -1
315 -1.03 -1.566479463 -1
315 -1.9 -1.218372915 -1
315 -0.2 -0.870266368 -1
315 0.22 -0.522159821 -1
315 -0.31 -0.174053274 -1
315 -0.47 0.174053274 -1
315 0.59 0.522159821 -1
315 0.87 0.870266368 -1
315 0.7 1.218372915 -1
315 1.54 1.566479463 -1
316 -0.41 -1.566479463 -1
316 -1.58 -1.218372915 -1
316 -0.3 -0.870266368 -1
316 -0.22 -0.522159821 -1
316 0.12 -0.174053274 -1
316 -0.19 0.174053274 -1
316 -0.38 0.522159821 -1
316 2.32 0.870266368 -1
316 -0.13 1.218372915 -1
316 0.78 1.566479463 -1
317 -0.6 -1.566479463 -1
317 0.59 -1.218372915 -1
317 -2.08 -0.870266368 -1
317 -0.2 -0.522159821 -1
317 -0.42 -0.174053274 -1
317 0.67 0.174053274 -1
317 1.59 0.522159821 -1
317 0.81 0.870266368 -1
317 -0.33 1.218372915 -1
317 -0.03 1.566479463 -1
318 -1.62 -1.566479463 -1
318 1.01 -1.218372915 -1
318 0.84 -0.870266368 -1
318 -0.86 -0.522159821 -1
318 -0.24 -0.174053274 -1
318 0.66 0.174053274 -1
318 0.54 0.522159821 -1
318 0.5 0.870266368 -1
318 -1.54 1.218372915 -1
318 0.7 1.566479463 -1
319 -0.54 -1.566479463 -1
319 -0.17 -1.218372915 -1
319 -1.81 -0.870266368 -1
319 -0.04 -0.522159821 -1
319 0.48 -0.174053274 -1
319 1.49 0.174053274 -1
319 1.14 0.522159821 -1
319 -1.14 0.870266368 -1
319 0 1.218372915 -1
319 0.59 1.566479463 -1
320 0.21 -1.566479463 1
320 1.04 -1.218372915 1
320 0.21 -0.870266368 1
320 1.11 -0.522159821 1
320 0.68 -0.174053274 1
320 -1.59 0.174053274 1
320 -1.49 0.522159821 1
320 -1.01 0.870266368 1
320 0.42 1.218372915 1
320 0.43 1.566479463 1
321 0.69 -1.566479463 -1
321 -0.71 -1.218372915 -1
321 1.82 -0.870266368 -1
321 0.15 -0.522159821 -1
321 -1.12 -0.174053274 -1
321 0.39 0.174053274 -1
321 0.59 0.522159821 -1
321 0.08 0.870266368 -1
321 -1.7 1.218372915 -1
321 -0.19 1.566479463 -1
322 -0.77 -1.566479463 -1
322 0.51 -1.218372915 -1
322 1.1 -0.870266368 -1
322 1.1 -0.522159821 -1
322 -1.09 -0.174053274 -1
322 -1.41 0.174053274 -1
322 -0.93 0.522159821 -1
322 0.19 0.870266368 -1
322 0.03 1.218372915 -1
322 1.27 1.566479463 -1
323 0.96 -1.566479463 -1
323 -0.42 -1.218372915 -1
323 0.84 -0.870266368 -1
323 -1.92 -0.522159821 -1
323 0.55 -0.174053274 -1
323 0.49 0.174053274 -1
323 1.28 0.522159821 -1
323 -0.21 0.870266368 -1
323 -0.68 1.218372915 -1
323 -0.89 1.566479463 -1
324 0.41 -1.566479463 1
324 0.91 -1.218372915 1
324 0.87 -0.870266368 1
324 -1.02 -0.522159821 1
324 -0.1 -0.174053274 1
324 1.33 0.174053274 1
324 -0.85 0.522159821 1
324 -0.64 0.870266368 1
324 0.74 1.218372915 1
324 -1.65 1.566479463 1
325 0.36 -1.566479463 -1
325 -0.36 -1.218372915 -1
325 0 -0.870266368 -1
325 -0.99 -0.522159821 -1
325 0.27 -0.174053274 -1
325 1.17 0.174053274 -1
325 0.18 0.522159821 -1
325 -0.36 0.870266368 -1
325 -1.89 1.218372915 -1
325 1.62 1.566479463 -1
326 -1.23 -1.566479463 1
326 -0.57 -1.218372915 1
326 -1.12 -0.870266368 1
326 -0.47 -0.522159821 1
326 -0.69 -0.174053274 1
326 0.28 0.174053274 1
326 0.6 0.522159821 1
326 1.69 0.870266368 1
326 0.15 1.218372915 1
326 1.37 1.566479463 1
327 -0.68 -1.566479463 1
327 1 -1.218372915 1
327 -0.16 -0.870266368 1
327 1.83 -0.522159821 1
327 -1.46 -0.174053274 1
327 0.36 0.174053274 1
327 0.25 0.522159821 1
327 0.27 0.870266368 1
327 -0.09 1.218372915 1
327 -1.32 1.566479463 1
328 0.4 -1.566479463 -1
328 0.26 -1.218372915 -1
328 -0.35 -0.870266368 -1
328 0.65 -0.522159821 -1
328 1.66 -0.174053274 -1
328 0.19 0.174053274 -1
328 0.04 0.522159821 -1
328 0.3 0.870266368 -1
328 -1.14 1.218372915 -1
328 -2.01 1.566479463 -1
329 1.01 -1.566479463 -1
329 -2.46 -1.218372915 -1
329 0.97 -0.870266368 -1
329 0.78 -0.522159821 -1
329 0.12 -0.174053274 -1
329 -0.26 0.174053274 -1
329 -0.15 0.522159821 -1
329 -0.42 0.870266368 -1
329 0.28 1.218372915 -1
329 0.12 1.566479463 -1
330 -2.32 -1.566479463 -1
330 -0.5 -1.218372915 -1
330 1.02 -0.870266368 -1
330 0.36 -0.522159821 -1
330 0.91 -0.174053274 -1
330 -0.77 0.174053274 -1
330 0.33 0.522159821 -1
330 0.28 0.870266368 -1
330 0.77 1.218372915 -1
330 -0.08 1.566479463 -1
331 -0.96 -1.566479463 -1
331 -0.65 -1.218372915 -1
331 1.05 -0.870266368 -1
331 1.94 -0.522159821 -1
331 -0.73 -0.174053274 -1
331 -0.27 0.174053274 -1
331 0.37 0.522159821 -1
331 -1.1 0.870266368 -1
331 0.8 1.218372915 -1
331 -0.46 1.566479463 -1
332 -1.24 -1.566479463 -1
332 -0.49 -1.218372915 -1
332 -0.51 -0.870266368 -1
332 1.08 -0.522159821 -1
332 -0.06 -0.174053274 -1
332 -1.52 0.174053274 -1
332 -0.18 0.522159821 -1
332 0.38 0.870266368 -1
332 1.47 1.218372915 -1
332 1.07 1.566479463 -1
333 -0.65 -1.566479463 1
333 -0.04 -1.218372915 1
333 -0.4 -0.870266368 1
333 0.63 -0.522159821 1
333 -1.07 -0.174053274 1
333 -0.04 0.174053274 1
333 1.27 0.522159821 1
333 -0.43 0.870266368 1
333 1.91 1.218372915 1
333 -1.18 1.566479463 1
334 -0.75 -1.566479463 1
334 0.6 -1.218372915 1
334 0.07 -0.870266368 1
334 0.17 -0.522159821 1
334 1.87 -0.174053274 1
334 0.95 0.174053274 1
334 -0.46 0.522159821 1
334 -0.8 0.870266368 1
334 -1.67 1.218372915 1
334 0.02 1.566479463 1
335 -0.51 -1.566479463 1
335 -0.6 -1.218372915 1
335 -0.55 -0.870266368 1
335 0.33 -0.522159821 1
335 -0.5 -0.174053274 1
335 -0.7 0.174053274 1
335 -0.26 0.522159821 1
335 -0.26 0.870266368 1
335 0.43 1.218372915 1
335 2.63 1.566479463 1
336 0.39 -1.566479463 -1
336 0.67 -1.218372915 -1
336 -0.49 -0.870266368 -1
336 1.68 -0.522159821 -1
336 -1.44 -0.174053274 -1
336 1.24 0.174053274 -1
336 -0.7 0.522159821 -1
336 -0.49 0.870266368 -1
336 0.11 1.218372915 -1
336 -0.98 1.566479463 -1
337 0.99 -1.566479463 -1
337 1.8 -1.218372915 -1
337 0.73 -0.870266368 -1
337 0.47 -0.522159821 -1
337 -0.05 -0.174053274 -1
337 -0.79 0.174053274 -1
337 -1.53 0.522159821 -1
337 -0.27 0.870266368 -1
337 -0.49 1.218372915 -1
337 -0.86 1.566479463 -1
338 0.77 -1.566479463 -1
338 0.77 -1.218372915 -1
338 0.18 -0.870266368 -1
338 -0.14 -0.522159821 -1
338 -1.17 -0.174053274 -1
338 0.36 0.174053274 -1
338 1.85 0.522159821 -1
338 -0.27 0.870266368 -1
338 -0.99 1.218372915 -1
338 -1.35 1.566479463 -1
339 0.09 -1.566479463 1
339 -1.03 -1.218372915 1
339 0.74 -0.870266368 1
339 -1.45 -0.522159821 1
339 0.46 -0.174053274 1
339 0.33 0.174053274 1
339 1.11 0.522159821 1
339 1.24 0.870266368 1
339 -0.01 1.218372915 1
339 -1.48 1.566479463 1
340 0.09 -1.566479463 -1
340 -0.91 -1.218372915 -1
340 -0.17 -0.870266368 -1
340 -0.89 -0.522159821 -1
340 0.75 -0.174053274 -1
340 1.77 0.174053274 -1
340 1.4 0.522159821 -1
340 -0.36 0.870266368 -1
340 -1.11 1.218372915 -1
340 -0.56 1.566479463 -1
341 -0.15 -1.566479463 1
341 -2.22 -1.218372915 1
341 1.05 -0.870266368 1
341 -0.13 -0.522159821 1
341 0.93 -0.174053274 1
341 -0.52 0.174053274 1
341 -0.27 0.522159821 1
341 -0.37 0.870266368 1
341 0.59 1.218372915 1
341 1.09 1.566479463 1
342 0.78 -1.566479463 1
342 1.11 -1.218372915 1
342 0.86 -0.870266368 1
342 -1.16 -0.522159821 1
342 0.48 -0.174053274 1
342 0.67 0.174053274 1
342 -1.63 0.522159821 1
342 0.53 0.870266368 1
342 -0.6 1.218372915 1
342 -1.05 1.566479463 1
343 0.41 -1.566479463 -1
343 -1.18 -1.218372915 -1
343 1.01 -0.870266368 -1
343 -0.91 -0.522159821 -1
343 -0.48 -0.174053274 -1
343 -1.01 0.174053274 -1
343 0.33 0.522159821 -1
343 1.73 0.870266368 -1
343 0.84 1.218372915 -1
343 -0.74 1.566479463 -1
344 0.21 -1.566479463 -1
344 0.17 -1.218372915 -1
344 -0.35 -0.870266368 -1
344 2.52 -0.522159821 -1
344 0.17 -0.174053274 -1
344 -0.84 0.174053274 -1
344 0.28 0.522159821 -1
344 -0.69 0.870266368 -1
344 -0.91 1.218372915 -1
344 -0.57 1.566479463 -1
345 -1.27 -1.566479463 -1
345 -1.69 -1.218372915 -1
345 -0.54 -0.870266368 -1
345 -0.05 -0.522159821 -1
345 0.68 -0.174053274 -1
345 0.88 0.174053274 -1
345 -0.18 0.522159821 -1
345 1.41 0.870266368 -1
345 -0.2 1.218372915 -1
345 0.96 1.566479463 -1
346 -0.41 -1.566479463 -1
346 -1.26 -1.218372915 -1
346 0.07 -0.870266368 -1
346 -0.41 -0.522159821 -1
346 -1.21 -0.174053274 -1
346 -0.2 0.174053274 -1
346 -0.55 0.522159821 -1
346 1.2 0.870266368 -1
346 1.27 1.218372915 -1
346 1.49 1.566479463 -1
347 -2.12 -1.566479463 1
347 -0.77 -1.218372915 1
347 -0.54 -0.870266368 1
347 1.17 -0.522159821 1
347 -0.36 -0.174053274 1
347 0.38 0.174053274 1
347 0.83 0.522159821 1
347 -0.15 0.870266368 1
347 0.94 1.218372915 1
347 0.63 1.566479463 1
348 0.71 -1.566479463 -1
348 -1.86 -1.218372915 -1
348 -1.07 -0.870266368 -1
348 -0.62 -0.522159821 -1
348 -0.44 -0.174053274 -1
348 0.09 0.174053274 -1
348 0.44 0.522159821 -1
348 0.36 0.870266368 -1
348 1.42 1.218372915 -1
348 0.98 1.566479463 -1
349 -0.48 -1.566479463 1
349 -0.62 -1.218372915 1
349 0.04 -0.870266368 1
349 0.49 -0.522159821 1
349 1.27 -0.174053274 1
349 1.72 0.174053274 1
349 -0.21 0.522159821 1
349 -0.55 0.870266368 1
349 0.13 1.218372915 1
349 -1.79 1.566479463 1
350 -1.09 -1.566479463 -1
350 1.45 -1.218372915 -1
350 -0.87 -0.870266368 -1
350 -0.24 -0.522159821 -1
350 -0.98 -0.174053274 -1
350 1.21 0.174053274 -1
350 -0.82 0.522159821 -1
350 1.32 0.870266368 -1
350 -0.18 1.218372915 -1
350 0.2 1.566479463 -1
351 -0.45 -1.566479463 1
351 -0.87 -1.218372915 1
351 -0.74 -0.870266368 1
351 1.54 -0.522159821 1
351 0.78 -0.174053274 1
351 -0.24 0.174053274 1
351 -1.31 0.522159821 1
351 0.75 0.870266368 1
351 1.28 1.218372915 1
351 -0.74 1.566479463 1
352 -1.33 -1.566479463 -1
352 -0.05 -1.218372915 -1
352 1.51 -0.870266368 -1
352 0.1 -0.522159821 -1
352 -0.52 -0.174053274 -1
352 0.26 0.174053274 -1
352 0.34 0.522159821 -1
352 -1.27 0.870266368 -1
352 1.57 1.218372915 -1
352 -0.61 1.566479463 -1
353 -0.82 -1.566479463 -1
353 1.61 -1.218372915 -1
353 0.86 -0.870266368 -1
353 -0.52 -0.522159821 -1
353 0.29 -0.174053274 -1
353 -0.78 0.174053274 -1
353 1.19 0.522159821 -1
353 -0.26 0.870266368 -1
353 -1.59 1.218372915 -1
353 0.04 1.566479463 -1
354 -1.79 -1.566479463 -1
354 -0.53 -1.218372915 -1
354 0.66 -0.870266368 -1
354 1.46 -0.522159821 -1
354 0.68 -0.174053274 -1
354 1.05 0.174053274 -1
354 -0.75 0.522159821 -1
354 -0.89 0.870266368 -1
354 0.15 1.218372915 -1
354 -0.06 1.566479463 -1
355 -0.61 -1.566479463 1
355 0.9 -1.218372915 1
355 1.38 -0.870266368 1
355 -0.24 -0.522159821 1
355 -0.7 -0.174053274 1
355 -1.85 0.174053274 1
355 -0.5 0.522159821 1
355 -0.15 0.870266368 1
355 1.08 1.218372915 1
355 0.7 1.566479463 1
356 1.04 -1.566479463 -1
356 1.16 -1.218372915 -1
356 -0.5 -0.870266368 -1
356 0.21 -0.522159821 -1
356 -0.11 -0.174053274 -1
356 -1.97 0.174053274 -1
356 1.36 0.522159821 -1
356 -0.37 0.870266368 -1
356 -0.24 1.218372915 -1
356 -0.56 1.566479463 -1
357 0.4 -1.566479463 1
357 -1.56 -1.218372915 1
357 1.09 -0.870266368 1
357 0.58 -0.522159821 1
357 0.83 -0.174053274 1
357 0.38 0.174053274 1
357 0.81 0.522159821 1
357 0.01 0.870266368 1
357 -0.96 1.218372915 1
357 -1.58 1.566479463 1
Recode IV. Assuming the data you provided is in a data set named A, then this fits the model and compares the slopes from 0 to 0.25.
data b; set a;
iv2=iv; if iv=-1 then iv2=2;
run;
proc glimmix data=b;
class id iv2;
effect spl=spline(progress/naturalcubic);
model DV = iv2*spl / noint s;
random int / subject=id;
estimate 'IV2=1 slope from 0 to .25' iv2*spl [4,1 .25] [-4,1 0] ;
estimate 'IV2=2 slope from 0 to .25' iv2*spl [4,2 .25] [-4,2 0];
estimate 'slope diff IV=1 - IV=2' iv2*spl [4,1 .25] [-4,1 0] [-4,2 .25] [4,2 0];
store mod;
run;
proc plm source=mod;
effectplot slicefit(x=progress sliceby=iv2);
run;
Since the plotted data suggest both curves are quite linear beyond about 0.5, perhaps it is the comparison of those slopes that is of most interest to you. Is so, then you could use this in the slope diff ESTIMATE statement:
iv2*spl [1,1 1.5] [-1,1 0.5] [-1,2 1.5] [1,2 0.5]
Terrific, Dave, thank you very much.
The spline strategy is excellent, for it truly allows me to compare slopes at the ranges of PROGRESS that are the most theoretically meaningful.
All the best.
Just to follow up on my previous remark about an alternative approach based on derivatives: This can be easily done using the Margins macro (as I mentioned earlier) but that macro uses GENMOD to fit the model and does not accommodate splines. Since GENMOD doesn't fit random effects models, a GEE model is used. So, the statements below fit higher-order (cubic in this case) curves over PROGRESS for each IV level. Note that using the name PROGRESS results in the higher-order effect names being too long, so a copy of PROGRESS is created named P to be used instead.
The Margins macro fits the GEE model as specified and computes the marginal effect (the derivative of DV with respect to PROGRESS) at each of four values of PROGRESS. These are in the output section labeled "P Average Marginal Effects." Note that these are the slopes of lines drawn tangent to the fitted curves at each of those four values. It also estimates the difference in the slopes at each of the four points. These are in the output section labeled "Differences Of P Average Marginal Effects." Tests and confidence intervals are provide for the individual slopes and differences. The "IV2 Predictive Margins" and "Differences Of IV2 Margins" sections might not be of as much interest, but these provide the estimated means on each curve at each of the four points and the differences at each point.
data atdat;
do p=0,0.5,1,1.5; output; end;
run;
%margins(data=b, class=id iv2, response=dv,
model=iv2|p|p|p, geesubject=id,
margins=iv2, effect=p,
at=p, atdata=atdat, diff=all, options=cl)
You can fit the same model as fit by the Margins macro and plot the fitted curves as below. The fitted curves are not too different from the spline models.
proc genmod;
class id iv2;
model DV = iv2|progress|progress|progress;
repeated subject=id;
effectplot slicefit(x=progress sliceby=iv2);
run;
SAS Innovate 2025 is scheduled for May 6-9 in Orlando, FL. Sign up to be first to learn about the agenda and registration!
ANOVA, or Analysis Of Variance, is used to compare the averages or means of two or more populations to better understand how they differ. Watch this tutorial for more.
Find more tutorials on the SAS Users YouTube channel.