I am using SAS to calculate sensitivity and specificity for a diagnostic test against the golden standard. Among 300 enrolled children 32 cases have the disease and 268 cases do not have the disease. The diagnostic test for which I want to calculate the specificity has 6 positives, 288 negatives and 6 missing values.
When I use
`` proc freq data=data;
tables Test*Response;
run;
``
I get different values for the specificity when I impute missing values with 999 (68.8%) and when I do not impute them (100%). What is the right approach? How missing values will influence on the specificity calculations ?
Here is my data:
``
test response
[1,] 0 0
[2,] 0 0
[3,] 1 1
[4,] 0 0
[5,] 0 0
[6,] 0 0
[7,] 1 1
[8,] 0 0
[9,] 0 0
[10,] 0 0
[11,] 0 0
[12,] 1 1
[13,] 0 0
[14,] 0 0
[15,] 0 0
[16,] 0 0
[17,] 0 0
[18,] 0 0
[19,] 0 0
[20,] 0 0
[21,] 0 0
[22,] 1 1
[23,] 0 0
[24,] 0 0
[25,] 0 0
[26,] 0 0
[27,] 0 0
[28,] 0 0
[29,] 0 0
[30,] 0 0
[31,] 0 1
[32,] 0 0
[33,] 0 0
[34,] NA 0
[35,] 0 0
[36,] 0 0
[37,] 0 0
[38,] 0 0
[39,] NA 1
[40,] 0 0
[41,] 1 1
[42,] 0 0
[43,] 0 0
[44,] 0 1
[45,] 0 0
[46,] 1 1
[47,] 0 0
[48,] 0 0
[49,] 0 0
[50,] 0 1
[51,] 0 0
[52,] 0 0
[53,] NA 0
[54,] 0 0
[55,] 0 0
[56,] 0 0
[57,] 0 0
[58,] 0 0
[59,] 1 1
[60,] 0 0
[61,] 1 1
[62,] 0 0
[63,] 0 0
[64,] 0 0
[65,] 0 0
[66,] 1 1
[67,] 0 0
[68,] 0 0
[69,] 0 0
[70,] 0 0
[71,] 0 0
[72,] 0 0
[73,] 0 0
[74,] 0 0
[75,] 0 0
[76,] 0 0
[77,] 0 0
[78,] 0 0
[79,] 0 0
[80,] 0 0
[81,] 0 0
[82,] 0 0
[83,] 1 1
[84,] 0 0
[85,] 0 0
[86,] 0 0
[87,] NA 1
[88,] 0 0
[89,] 0 0
[90,] 0 0
[91,] 0 0
[92,] 0 0
[93,] 0 0
[94,] 0 0
[95,] 0 0
[96,] 0 0
[97,] 0 0
[98,] 0 0
[99,] 0 0
[100,] 0 0
[101,] 0 0
[102,] 0 0
[103,] 0 0
[104,] 0 0
[105,] 0 0
[106,] 0 0
[107,] 0 0
[108,] 0 0
[109,] 0 0
[110,] 0 0
[111,] 0 0
[112,] 0 0
[113,] 0 0
[114,] 0 0
[115,] 0 0
[116,] 0 0
[117,] 0 0
[118,] 0 0
[119,] 0 0
[120,] 0 0
[121,] 0 0
[122,] 0 0
[123,] 0 0
[124,] 0 0
[125,] 1 1
[126,] 0 0
[127,] 0 0
[128,] 0 0
[129,] 0 0
[130,] 0 0
[131,] 0 0
[132,] 0 0
[133,] 0 0
[134,] 0 0
[135,] 0 0
[136,] 1 1
[137,] 0 0
[138,] 1 1
[139,] 0 0
[140,] 0 0
[141,] 0 0
[142,] 0 0
[143,] 0 0
[144,] 0 0
[145,] 0 0
[146,] 0 0
[147,] 0 0
[148,] 0 0
[149,] 0 0
[150,] 0 0
[151,] 1 1
[152,] 1 1
[153,] 0 0
[154,] 0 0
[155,] 0 0
[156,] 1 1
[157,] 0 0
[158,] 0 0
[159,] 0 0
[160,] 0 0
[161,] 0 0
[162,] 0 0
[163,] 0 0
[164,] 0 0
[165,] 0 0
[166,] 0 0
[167,] 0 0
[168,] 0 0
[169,] 0 0
[170,] 0 0
[171,] 1 1
[172,] 0 0
[173,] 0 0
[174,] 0 0
[175,] 0 0
[176,] 0 0
[177,] 0 0
[178,] 0 0
[179,] 0 0
[180,] 0 0
[181,] 0 0
[182,] 0 0
[183,] 0 0
[184,] 0 0
[185,] 0 0
[186,] 0 0
[187,] 0 0
[188,] 1 1
[189,] 0 0
[190,] 0 0
[191,] 0 0
[192,] 0 0
[193,] 0 1
[194,] 0 0
[195,] 0 0
[196,] 0 0
[197,] 0 1
[198,] NA 0
[199,] 1 1
[200,] 0 0
[201,] 0 0
[202,] 0 0
[203,] 0 0
[204,] 0 1
[205,] 0 0
[206,] 0 0
[207,] 0 0
[208,] 0 0
[209,] 0 0
[210,] 0 0
[211,] 0 0
[212,] 0 0
[213,] NA 0
[214,] 0 0
[215,] 0 0
[216,] 0 0
[217,] 0 0
[218,] 0 0
[219,] 0 0
[220,] 0 0
[221,] 0 0
[222,] 0 0
[223,] 0 0
[224,] 0 0
[225,] 0 0
[226,] 0 0
[227,] 0 0
[228,] 0 0
[229,] 0 0
[230,] 0 0
[231,] 0 0
[232,] 0 0
[233,] 0 0
[234,] 1 1
[235,] 1 1
[236,] NA 0
[237,] 0 0
[238,] 0 0
[239,] 0 0
[240,] 0 0
[241,] 0 0
[242,] 0 0
[243,] 0 0
[244,] 0 0
[245,] 0 0
[246,] 0 0
[247,] 0 0
[248,] 0 0
[249,] 0 0
[250,] 0 0
[251,] 0 0
[252,] 0 0
[253,] 0 0
[254,] 0 0
[255,] 0 0
[256,] 0 0
[257,] 0 0
[258,] 0 0
[259,] 0 0
[260,] 1 1
[261,] 0 0
[262,] 0 0
[263,] 0 0
[264,] 0 0
[265,] 0 0
[266,] 0 0
[267,] 0 0
[268,] 0 0
[269,] 0 0
[270,] 0 0
[271,] 0 0
[272,] NA 1
[273,] 0 0
[274,] 0 0
[275,] 0 0
[276,] 0 0
[277,] 0 0
[278,] 0 0
[279,] 0 0
[280,] 0 0
[281,] 0 0
[282,] 0 0
[283,] 0 0
[284,] 0 1
[285,] 0 0
[286,] 0 0
[287,] 0 0
[288,] 0 0
[289,] 0 0
[290,] 0 0
[291,] 0 0
[292,] 0 0
[293,] 0 0
[294,] 0 0
[295,] 0 0
[296,] 0 0
[297,] NA 0
[298,] 0 0
[299,] 0 0
[300,] 0 0