As there is no test data, or how the output should look here is a guess:
proc sql; create table WANT as select A.*, B.DELAYTYPE from DATASET1 A full join DATASET2 B on A.FLIGHT_NUMBER=B.FLIGHT_NUMBER and A.DATE=B.DATE where dELAYTYPE="DELAYED"; quit;
Expected output is
flightdate
flight number
destination
delay
raw datasets;
flightdelays;
informat Date date9.;
input FlightNumber $ 1-3 @6 Date date9. Origin $ 17-19
Destination $ 22-24 DelayCategory $ 27-41
DestinationType $ 44-58 DayOfWeek 61 Delay @65;
format date date9.;
datalines;
182 01MAR2000 LGA YYZ No Delay International 4 0
114 01MAR2000 LGA LAX 1-10 Minutes Domestic 4 8
202 01MAR2000 LGA ORD No Delay Domestic 4 -5
219 01MAR2000 LGA LHR 11+ Minutes International 4 18
439 01MAR2000 LGA LAX No Delay Domestic 4 -4
387 01MAR2000 LGA CPH No Delay International 4 -2
data sasuser.marchflights;
informat Date date9. DepartureTime time5.;
input FlightNumber $ 1-3 @6 Date date9. @17 DepartureTime time5.
Origin $ 19-21 Destination $ 29-31 Distance 34-37 Mail 40-42
Freight 45-47 Boarded 50-52 Transferred 55-56
NonRevenue 59 Deplaned 62-64 PassengerCapacity 67-69;
format Date date9. DepartureTime time5.;
datalines;
182 01MAR2000 8:21 LGA YYZ 366 458 390 104 16 3 123 178
114 01MAR2000 7:10 LGA LAX 2475 357 390 172 18 6 196 210
202 01MAR2000 10:43 LGA ORD 740 369 244 151 11 5 157 210
219 01MAR2000 9:31 LGA LHR 3442 412 334 198 17 7 222 250
439 01MAR2000 12:16 LGA LAX 2475 422 267 167 13 5 185 210
387 01MAR2000 11:40 LGA CPH 3856 423 398 152 8 3 163 250
290 01MAR2000 6:56 LGA WAS 229 327 253 96 16 7 117 180
523 01MAR2000 15:19 LGA ORD 740 476 456 177 20 3 185 210
982 01MAR2000 10:28 LGA DFW 1383 383 355 49 19 2 56 180
622 01MAR2000 12:19 LGA FRA 3857 255 243 207 15 5 227 250
821 01MAR2000 14:56 LGA LHR 3442 334 289 205 13 4 222 250
Ahem...
All those columns:
@Ravikumarpa4 wrote:
Expected output is
flightdate
flight number
destination
delay
are already in dataset flightdelays. What for do you want to run the SQL join?
I need output only below variables
Flight number
date
destination
DelayCategory in which i need only flights which are delayed ex:1-10 Minutes, 11+ Minutes
@Ravikumarpa4 wrote:
I need output only below variables
Flight number
date
destination
DelayCategory in which i need only flights which are delayed ex:1-10 Minutes, 11+ Minutes
So you don't need a join at all, as all those variables are in the same dataset. Just select them from flightdelays with a suitable where condition. That is a simple query that can be point-and clicked in the Query Builder.
proc sql;
create table want as
select
a.*,
b.delaytype
from
have1 a
left join
have2 b /* have2 contains delaytype */
on a.flightnumber = b.flightnumber and a.date = b.date
;
quit;
For more help, post the datasets in data steps.
You're kidding, right?
Read your own post, please.
@Ravikumarpa4 wrote:
But destination in different dataset
@Ravikumarpa4 wrote:
Sorry in flightdelay data set there is no destination by miss I pasted in raw dataset
Then post correct example data.
marchflights;
informat Date date9. DepartureTime time5.;
input FlightNumber $ 1-3 @6 Date date9. @17 DepartureTime time5.
Distance 34-37 Mail 40-42
Freight 45-47 Boarded 50-52 Transferred 55-56
NonRevenue 59 Deplaned 62-64 PassengerCapacity 67-69;
format Date date9. DepartureTime time5.;
datalines;
182 01MAR2000 8:21 366 458 390 104 16 3 123 178
114 01MAR2000 7:10 2475 357 390 172 18 6 196 210
202 01MAR2000 10:43 740 369 244 151 11 5 157 210
219 01MAR2000 9:31 3442 412 334 198 17 7 222 250
439 01MAR2000 12:16 2475 422 267 167 13 5 185 210
387 01MAR2000 11:40 3856 423 398 152 8 3 163 250
290 01MAR2000 6:56 229 327 253 96 16 7 117 180
523 01MAR2000 15:19 740 476 456 177 20 3 185 210
982 01MAR2000 10:28 1383 383 355 49 19 2 56 180
622 01MAR2000 12:19 3857 255 243 207 15 5 227 250
821 01MAR2000 14:56 3442 334 289 205 13 4 222 250
872 01MAR2000 13:02 2475 316 357 145 13 5 163 210
416 01MAR2000 9:09 229 497 235 71 18 4 90 180
132 01MAR2000 15:35 366 288 459 115 24 5 144 178
829 01MAR2000 13:38 229 487 235 75 16 5 88 180
183 01MAR2000 17:46 229 371 270 80 19 3 85 180
271 01MAR2000 13:17 3635 490 392 138 14 6 158 250
921 01MAR2000 17:11 1383 362 377 122 8 4 132 180
302 01MAR2000 20:22 229 363 273 105 24 3 128 180
431 01MAR2000 18:50 2475 403 427 153 14 6 173 210
308 01MAR2000 21:06 740 311 307 159 20 8 181 210
Save $250 on SAS Innovate and get a free advance copy of the new SAS For Dummies book! Use the code "SASforDummies" to register. Don't miss out, May 6-9, in Orlando, Florida.
Learn the difference between classical and Bayesian statistical approaches and see a few PROC examples to perform Bayesian analysis in this video.
Find more tutorials on the SAS Users YouTube channel.
Ready to level-up your skills? Choose your own adventure.