BookmarkSubscribeRSS Feed
🔒 This topic is solved and locked. Need further help from the community? Please sign in and ask a new question.
Choit
Calcite | Level 5
Hi,
Trying to find a way in SAS to solve relationshio between x and y which have a gamma curve relationship,
Data as below

X Y
1 0.000516
2 0.000847
3 0.001459
4 0.001939
5 0.002075
6 0.001749

Relationship solved using excel using minimum error square
Y=gamma.dist(x,3.2840,2.1535,0) * 0.0165

How do i get sas to solve to the parameter as how excel does to get the 3 parameters in the function above
3.2840 , 2.1535 , 0.0165

Thanks

1 ACCEPTED SOLUTION

Accepted Solutions
FreelanceReinh
Jade | Level 19

Hi @Choit and welcome to the SAS Support Communities!

 

PROC NLIN can estimate the parameters:

data have;
input x y;
cards;
1 0.000516
2 0.000847
3 0.001459
4 0.001939
5 0.002075
6 0.001749
;

ods output ParameterEstimates=est;
proc nlin data=have;
parms a=3 b=2 c=.01; 
model y=c*pdf('gamma',x,a,b);
run;

proc print data=est noobs;
var parameter estimate;
run;

Result:

Parameter    Estimate

    a          3.2866
    b          2.1503
    c          0.0165

The estimates for a and b differ slightly from your Excel values, which might be due to rounding error in variable Y. If the Y values are taken as exact values, the sum of squares is smaller for the above estimates. This is actually not maximum likelihood estimation. The Gauss-Newton method with initial values a=3, b=2, c=.01 was used to minimize the sum of squares.

 

View solution in original post

2 REPLIES 2
FreelanceReinh
Jade | Level 19

Hi @Choit and welcome to the SAS Support Communities!

 

PROC NLIN can estimate the parameters:

data have;
input x y;
cards;
1 0.000516
2 0.000847
3 0.001459
4 0.001939
5 0.002075
6 0.001749
;

ods output ParameterEstimates=est;
proc nlin data=have;
parms a=3 b=2 c=.01; 
model y=c*pdf('gamma',x,a,b);
run;

proc print data=est noobs;
var parameter estimate;
run;

Result:

Parameter    Estimate

    a          3.2866
    b          2.1503
    c          0.0165

The estimates for a and b differ slightly from your Excel values, which might be due to rounding error in variable Y. If the Y values are taken as exact values, the sum of squares is smaller for the above estimates. This is actually not maximum likelihood estimation. The Gauss-Newton method with initial values a=3, b=2, c=.01 was used to minimize the sum of squares.

 

Rick_SAS
SAS Super FREQ

For more on using PROC NLIN to fit nonlinear curves, see the article

"Fit a growth curve in SAS"

 

 

SAS INNOVATE 2024

Innovate_SAS_Blue.png

Registration is open! SAS is returning to Vegas for an AI and analytics experience like no other! Whether you're an executive, manager, end user or SAS partner, SAS Innovate is designed for everyone on your team. Register for just $495 by 12/31/2023.

If you are interested in speaking, there is still time to submit a session idea. More details are posted on the website. 

Register now!

What is Bayesian Analysis?

Learn the difference between classical and Bayesian statistical approaches and see a few PROC examples to perform Bayesian analysis in this video.

Find more tutorials on the SAS Users YouTube channel.

Get the $99 certification deal.jpg

 

 

Back in the Classroom!

Select SAS Training centers are offering in-person courses. View upcoming courses for:

View all other training opportunities.

Discussion stats
  • 2 replies
  • 869 views
  • 4 likes
  • 3 in conversation