How do I interpret the outlier effects such as level shift on log transformed data, clearly exponentiating the coefficients is not correct.
As an example, see below is what I get. how to interpret Nov 2008 level shift value of -0.09102?
below is a reproducible example to produce the above coefficients.
data retail(label="Retail Sales");
attrib
Date length=8 label="Date" format=MONYY7. informat=MONYY7.
sales length=8 label="Retail Sales"
;
input Date sales;
datalines;
Jan1992 146376
Feb1992 147079
Mar1992 159336
Apr1992 163669
May1992 170068
Jun1992 168663
Jul1992 169890
Aug1992 170364
Sep1992 164617
Oct1992 173655
Nov1992 171547
Dec1992 208838
Jan1993 153221
Feb1993 150087
Mar1993 170439
Apr1993 176456
May1993 182231
Jun1993 181535
Jul1993 183682
Aug1993 183318
Sep1993 177406
Oct1993 182737
Nov1993 187443
Dec1993 224540
Jan1994 161349
Feb1994 162841
Mar1994 192319
Apr1994 189569
May1994 194927
Jun1994 197946
Jul1994 193355
Aug1994 202388
Sep1994 193954
Oct1994 197956
Nov1994 202520
Dec1994 241111
Jan1995 175344
Feb1995 172138
Mar1995 201279
Apr1995 196039
May1995 210478
Jun1995 211844
Jul1995 203411
Aug1995 214248
Sep1995 202122
Oct1995 204044
Nov1995 212190
Dec1995 247491
Jan1996 185019
Feb1996 192380
Mar1996 212110
Apr1996 211718
May1996 226936
Jun1996 217511
Jul1996 218111
Aug1996 226062
Sep1996 209250
Oct1996 222663
Nov1996 223953
Dec1996 258081
Jan1997 200389
Feb1997 197556
Mar1997 225133
Apr1997 220329
May1997 234190
Jun1997 227365
Jul1997 231521
Aug1997 235252
Sep1997 222807
Oct1997 232251
Nov1997 228284
Dec1997 271054
Jan1998 207853
Feb1998 203863
Mar1998 230313
Apr1998 234503
May1998 245027
Jun1998 244067
Jul1998 241431
Aug1998 240462
Sep1998 231243
Oct1998 244234
Nov1998 240991
Dec1998 288969
Jan1999 218126
Feb1999 220650
Mar1999 253550
Apr1999 250783
May1999 262113
Jun1999 260918
Jul1999 262051
Aug1999 265089
Sep1999 253905
Oct1999 258040
Nov1999 264106
Dec1999 317659
Jan2000 236422
Feb2000 250580
Mar2000 279515
Apr2000 264417
May2000 283706
Jun2000 281288
Jul2000 271146
Aug2000 283944
Sep2000 269155
Oct2000 270899
Nov2000 276507
Dec2000 319958
Jan2001 250746
Feb2001 247772
Mar2001 280449
Apr2001 274925
May2001 296013
Jun2001 287881
Jul2001 279098
Aug2001 294763
Sep2001 261924
Oct2001 291596
Nov2001 287537
Dec2001 326202
Jan2002 255598
Feb2002 253086
Mar2002 285261
Apr2002 284747
May2002 300402
Jun2002 288854
Jul2002 295433
Aug2002 307256
Sep2002 273189
Oct2002 287540
Nov2002 290705
Dec2002 337006
Jan2003 268328
Feb2003 259051
Mar2003 293693
Apr2003 294251
May2003 312389
Jun2003 300998
Jul2003 309923
Aug2003 317056
Sep2003 293890
Oct2003 304036
Nov2003 301265
Dec2003 357577
Jan2004 281460
Feb2004 282444
Mar2004 319077
Apr2004 315191
May2004 328408
Jun2004 321044
Jul2004 328000
Aug2004 326317
Sep2004 313524
Oct2004 319726
Nov2004 324259
Dec2004 387155
Jan2005 293261
Feb2005 295062
Mar2005 339141
Apr2005 335632
May2005 345348
Jun2005 350945
Jul2005 351827
Aug2005 355701
Sep2005 333289
Oct2005 336134
Nov2005 343798
Dec2005 405608
Jan2006 318546
Feb2006 314051
Mar2006 361993
Apr2006 351667
May2006 373560
Jun2006 366615
Jul2006 362203
Aug2006 375795
Sep2006 346214
Oct2006 348796
Nov2006 356928
Dec2006 417991
Jan2007 328877
Feb2007 323162
Mar2007 374142
Apr2007 358535
May2007 391512
Jun2007 376639
Jul2007 372354
Aug2007 388016
Sep2007 353936
Oct2007 368681
Nov2007 377802
Dec2007 426077
Jan2008 342639
Feb2008 343893
Mar2008 372907
Apr2008 368920
May2008 397956
Jun2008 378507
Jul2008 383726
Aug2008 382862
Sep2008 350542
Oct2008 349847
Nov2008 335545
Dec2008 384236
Jan2009 310188
Feb2009 299412
Mar2009 328526
Apr2009 329854
May2009 347728
Jun2009 344405
Jul2009 348071
Aug2009 353392
Sep2009 324646
Oct2009 338610
Nov2009 339363
Dec2009 400281
Jan2010 314557
Feb2010 310925
Mar2010 360679
Apr2010 356333
May2010 365605
Jun2010 358604
Jul2010 361939
Aug2010 362627
Sep2010 345999
Oct2010 355209
Nov2010 365828
Dec2010 426663
Jan2011 335587
Feb2011 337314
Mar2011 387088
Apr2011 380775
May2011 391999
Jun2011 388700
Jul2011 384682
Aug2011 394609
Sep2011 375025
Oct2011 379482
Nov2011 391220
Dec2011 451821
Jan2012 355184
Feb2012 372401
Mar2012 414149
Apr2012 392949
May2012 418608
Jun2012 400975
Jul2012 396026
Aug2012 417922
Sep2012 385609
Oct2012 399400
Nov2012 411065
Dec2012 462102
Jan2013 375587
Feb2013 373987
Mar2013 421719
Apr2013 408544
May2013 437188
Jun2013 414714
Jul2013 422410
Aug2013 435005
Sep2013 396213
Oct2013 415700
Nov2013 423786
Dec2013 476910
Jan2014 383054
Feb2014 380019
Mar2014 432651
Apr2014 431396
May2014 459231
Jun2014 433282
Jul2014 443281
Aug2014 451366
Sep2014 421424
Oct2014 438457
Nov2014 439165
Dec2014 502330
Jan2015 398027
Feb2015 388063
Mar2015 445970
Apr2015 439637
May2015 464785
Jun2015 449794
Jul2015 459533
Aug2015 457905
Sep2015 432782
Oct2015 446593
Nov2015 446773
Dec2015 519625
Jan2016 401982
Feb2016 415189
Mar2016 461198
Apr2016 451468
May2016 470430
Jun2016 465023
Jul2016 462162
Aug2016 471996
Sep2016 448749
Oct2016 453088
Nov2016 467765
Dec2016 540273
Jan2017 421560
Feb2017 417983
Mar2017 483059
Apr2017 466058
May2017 495264
Jun2017 482456
Jul2017 475984
Aug2017 491090
Sep2017 470406
Oct2017 476925
Nov2017 499446
Dec2017 560379
Jan2018 445484
Feb2018 437005
Mar2018 510380
Apr2018 482412
May2018 530082
Jun2018 510029
Jul2018 508010
Aug2018 523933
Sep2018 481094
Oct2018 506360
Nov2018 522804
Dec2018 563497
Jan2019 459143
Feb2019 444794
Mar2019 518304
Apr2019 510176
May2019 547036
Jun2019 517984
Jul2019 533058
;
run;
data xretail;
set retail;
lsales = log(sales);
run;
proc arima data=xretail;
identify var= lsales(1,12);
estimate q=(1)(12) noint method=ml;
outlier type=(ao ls tc(5)) maxnum=10 id=Date;
run;
Let's denote sales as Y_t, d1 the first difference, d12 the differencing of order 12, and N_t the MA noise associated with the specification q=(1)(12). Then your initial model is d12(d1(log(Y_t))) = N_t. A level shift at NOV2008 would imply a model d12(d1(log(Y_t))) = beta*LS_t + N_t where beta=-0.09102 and LS_t a dummy variable that is zero before t = NOV2008 and 1 on and after NOV2008. We can expand both these models (with and without the level shift) in their multiplicative forms to understand the meaning of the "level shift". Expanding the models fully one gets the following expressions:
Initial model: Y_t = Y_(t-1) * (Y_(t-12) / Y_(t-13)) * exp(N_t)
Level shift model: Y_t = Y_(t-1) * (Y_(t-12) / Y_(t-13)) * M_t * exp(N_t) where M_t = 1 before t = NOV2008 and exp(beta) thereafter.
As you can see, calling (Y_(t-12) / Y_(t-13)) the previous year's growth rate, the level shift model says, after NOV2008, the growth rate should be damped by exp(-0.09102).
Does this help?
I want to correct my earlier reply. After checking the description of the outlier detection process in PROC ARIMA doc, I realized that the model for level shift is as follows (continuing with the earlier notation): d12(d1(log(Y_t))) = beta*d12(d1(LS_t)) + N_t. That is, the level shift is differenced by the same differencing operator as the response variable. Note that beta*d12(d1(LS_t)) is zero everywhere except at NOV2008, where it is 1, and at NOV2009, where it is -1. This means that in the multiplicative form the model becomes
Y_t = Y_(t-1) * (Y_(t-12) / Y_(t-13)) * M_t * exp(N_t) where M_t is 1 everywhere except at NOV2008, where it is exp(beta), and at NOV2009, where it is exp(-beta). That is, the growth rate gets a jolt of exp(-0.09102) on NOV2008 and another one (in a reverse direction) of exp(0.09102) on NOV2009.
Sorry for this mistake.
It's finally time to hack! Remember to visit the SAS Hacker's Hub regularly for news and updates.