BookmarkSubscribeRSS Feed
🔒 This topic is solved and locked. Need further help from the community? Please sign in and ask a new question.
MANGALA
Calcite | Level 5

I want to forecast for seasonal arima for weekly data. so with this regard, should i consider 1,12 or 1,52. and wat is the method of interpretation

proc arima data= Banana;

identify var= price(1,12) nlag=15;

run;

proc arima data= Banana;

identify var= price(1,12) nlag=15;

estimate p=(1)(12) q=(1)(12);

forecast lead=5 interval=month out=sar111;

run;

proc arima data= Banana;

identify var= price(1,52) nlag=15;

run;

proc arima data= Banana;

identify var= price(1,52) nlag=15;

estimate p=(1)(52) q=(1)(52);

forecast lead=5 interval=month out=sar111;

run;

1 ACCEPTED SOLUTION

Accepted Solutions
SnurreJensen
SAS Employee

I would recommend starting with plotting your timeseries - both the original series, but also the (seasonally) differenced series and the seasonal cycles. This will give you an indication of the patterns in your data. Plotting can be done using PROC TIMESERIES which is also part of SAS/ETS. For more info, please have a look at the documentation: The TIMESERIES Procedure :: SAS/ETS(R) 14.1 User's Guide

Once that is done, start using the identify statement in PROC ARIMA to examine which orders of differencing you need - if any, type of lag-structure etc. Once you have that in place you can start producing forecasts. For more information on PROC ARIMA please consult the documentation which can be found here: The TIMESERIES Procedure :: SAS/ETS(R) 14.1 User's Guide

Thanks,

Snurre

View solution in original post

2 REPLIES 2
SnurreJensen
SAS Employee

I would recommend starting with plotting your timeseries - both the original series, but also the (seasonally) differenced series and the seasonal cycles. This will give you an indication of the patterns in your data. Plotting can be done using PROC TIMESERIES which is also part of SAS/ETS. For more info, please have a look at the documentation: The TIMESERIES Procedure :: SAS/ETS(R) 14.1 User's Guide

Once that is done, start using the identify statement in PROC ARIMA to examine which orders of differencing you need - if any, type of lag-structure etc. Once you have that in place you can start producing forecasts. For more information on PROC ARIMA please consult the documentation which can be found here: The TIMESERIES Procedure :: SAS/ETS(R) 14.1 User's Guide

Thanks,

Snurre

alexchien
Pyrite | Level 9

Seasonal differencing usually works better than seasonal AR/MA. Please refer to the following link for more info. 

https://onlinecourses.science.psu.edu/stat510/node/67

 

sas-innovate-white.png

Special offer for SAS Communities members

Save $250 on SAS Innovate and get a free advance copy of the new SAS For Dummies book! Use the code "SASforDummies" to register. Don't miss out, May 6-9, in Orlando, Florida.

 

View the full agenda.

Register now!

Discussion stats
  • 2 replies
  • 2864 views
  • 0 likes
  • 3 in conversation