I am trying to estimate a Macroeconomic VAR/BVAR for the purpose of forecasting/impulse response simulations.
I have a total of 5 macro variables that are 4 country specific and 1 for the Euro Area :
GDP_BG - GDP ; HICP_BG - Inflation; HP_BG - House prices ; Unemp_BG - Unemployment ; GDP_EA - GDP euro area
I have colelcted quarterly and monthly data for the period 2006 - 2016. After cubic interpolation of the quarterly data all series are in monthly year on year grwoth format.
1. DF tests indicate non-stationarity of the series:
Dickey-Fuller Unit Root Tests | |||||
Variable | Type | Rho | Pr < Rho | Tau | Pr < Tau |
GDP_BG | Zero Mean | -8.62 | 0.0402 | -1.95 | 0.0495 |
Single Mean | -15.03 | 0.0348 | -2.64 | 0.0885 | |
Trend | -17.17 | 0.108 | -2.93 | 0.1564 | |
GDP_EA | Zero Mean | -42.7 | <.0001 | -4.44 | <.0001 |
Single Mean | -48.69 | 0.0011 | -4.75 | 0.0002 | |
Trend | -48.02 | 0.0004 | -4.73 | 0.001 | |
Unemp_BG | Zero Mean | -0.18 | 0.6399 | -0.22 | 0.6043 |
Single Mean | -5.76 | 0.36 | -1.77 | 0.3947 | |
Trend | -7.8 | 0.5888 | -2.33 | 0.4161 | |
HICP_BG | Zero Mean | -1.13 | 0.4495 | -0.48 | 0.5071 |
Single Mean | -3.39 | 0.6051 | -1.18 | 0.6833 | |
Trend | -12.61 | 0.2665 | -2.51 | 0.3215 | |
HP_BG | Zero Mean | -13.83 | 0.0087 | -2.61 | 0.0093 |
Single Mean | -14 | 0.0458 | -2.61 | 0.0929 | |
Trend | -14.24 | 0.1953 | -2.74 | 0.2225 |
2. Taking this into account I run the VAR(3) - suggested by the minimum information criteria
/* VAR with 1st Difference*/ proc varmax data=DATA_ALL.MACRO_CLEAN_ALL; model GDP_BG GDP_EA Unemp_BG HICP_BG HP_BG / p=3 noint dftest dify=(1) print=(estimates); run;
3. The DF test now indicates stationarity, however, there is no significant relationship apart from the diagonal elements of the AR parameters, except for higher order lags:
AR Coefficient Estimates | ||||||
Lag | Variable | GDP_BG | GDP_EA | Unemp_BG | HICP_BG | HP_BG |
1 | GDP_BG | 1.51695 | -0.32323 | -0.07316 | 0.0208 | 0.04657 |
GDP_EA | 0.04184 | 1.54188 | -0.0317 | -0.00889 | 0.02111 | |
Unemp_BG | 0.0585 | -0.13691 | 1.01772 | 0.02646 | -0.01353 | |
HICP_BG | -0.09687 | -0.17317 | 0.45338 | 0.26286 | 0.05087 | |
HP_BG | 0.40168 | -0.6717 | -0.16238 | 0.07366 | 1.52713 | |
2 | GDP_BG | -1.24578 | 0.57102 | 0.24424 | -0.007 | -0.01004 |
GDP_EA | -0.01199 | -1.08216 | 0.046 | -0.00174 | -0.01859 | |
Unemp_BG | -0.03327 | 0.1483 | -0.32875 | -0.02099 | 0.01321 | |
HICP_BG | 0.02011 | 1.41164 | -0.48313 | -0.00346 | -0.11958 | |
HP_BG | -0.27895 | 2.18608 | -0.45604 | 0.22938 | -1.32891 | |
3 | GDP_BG | 0.4411 | -0.33352 | -0.25461 | -0.04826 | 0.01708 |
GDP_EA | 0.02513 | 0.38162 | -0.01667 | -0.01701 | 0.01481 | |
Unemp_BG | -0.02864 | 0.10291 | -0.01005 | -0.03522 | 0.00014 | |
HICP_BG | 0.31382 | -1.4971 | -0.1214 | 0.14482 | 0.10065 | |
HP_BG | 0.35618 | -2.09016 | 0.63977 | 0.11498 | 0.54739 | |
Schematic Representation of Parameter Estimates | ||||||
Variable/Lag | AR1 | AR2 | AR3 | |||
GDP_BG | +.... | -.... | +.... | |||
GDP_EA | .+... | .-... | .+... | |||
Unemp_BG | ..+.. | ..-.. | ..... | |||
HICP_BG | ...+. | ..... | .-... | |||
HP_BG | ....+ | ...+- | .-..+ | |||
+ is > 2*std error, - is < -2*std error, . is between, * is N/A |
If I proceed with imposing a BVAR prior the higher order lags are eliminated by the prior and the resulting model has significant parameters at low order diagonal parameters.
I don't understand the reason for these results. How is it possible that stationary macro variables do not have any dependence between each other? Any suggestions for what am I making wrong and what could I try?
Could the monthly frequency be the reason for these results? If so should I test much higher lag orders (p=12) and then restrict the insgignificant parameters?
SAS is headed back to Vegas for an AI and analytics experience like no other! Whether you're an executive, manager, end user or SAS partner, SAS Innovate is designed for everyone on your team.
Interested in speaking? Content from our attendees is one of the reasons that makes SAS Innovate such a special event!
Learn how to run multiple linear regression models with and without interactions, presented by SAS user Alex Chaplin.
Find more tutorials on the SAS Users YouTube channel.