yes, it worked, thanks a lot 🙂 🙂
OK. You mean this.
data have;
infile cards dlm='09'x truncover;
input P_ID $ Col Year $ c1 c2 c3 c4 c5 c6 c7 c8 c9;
cards;
A 1 Y1 0.932606 0 0 0 0.059015 0.002698 0.003264 0.00071 0.001707
A 2 Y1 0 0.868185 0 0 0.1086 0.008444 0.008169 0.001671 0.004932
A 3 Y1 0 0 0.823402 0 0.14322 0.012453 0.010085 0.002494 0.008346
A 4 Y1 0 0 0 0.758853 0.178104 0.024061 0.016185 0.00652 0.016278
A 5 Y1 0 0 0 0 0.798871 0.031061 0.081029 0.021842 0.067197
A 6 Y1 0 0 0 0 0.298265 0.213144 0.150618 0.049483 0.288489
A 7 Y1 0 0 0 0 0.179519 0.021707 0.239906 0.084662 0.474207
A 8 Y1 0 0 0 0 0.039876 0.005683 0.022931 0.053959 0.877551
A 9 Y1 0 0 0 0 0.010017 0.001072 0.00444 0.003509 0.980962
A 1 Y2 0.932606 0 0 0 0.059015 0.002698 0.003264 0.00071 0.001707
A 2 Y2 0 0.868185 0 0 0.1086 0.008444 0.008169 0.001671 0.004932
A 3 Y2 0 0 0.823402 0 0.14322 0.012453 0.010085 0.002494 0.008346
A 4 Y2 0 0 0 0.758853 0.178104 0.024061 0.016185 0.00652 0.016278
A 5 Y2 0 0 0 0 0.798871 0.031061 0.081029 0.021842 0.067197
A 6 Y2 0 0 0 0 0.298265 0.213144 0.150618 0.049483 0.288489
A 7 Y2 0 0 0 0 0.179519 0.021707 0.239906 0.084662 0.474207
A 8 Y2 0 0 0 0 0.039876 0.005683 0.022931 0.053959 0.877551
A 9 Y2 0 0 0 0 0.010017 0.001072 0.00444 0.003509 0.980962
A 1 Y3 0.932606 0 0 0 0.059015 0.002698 0.003264 0.00071 0.001707
A 2 Y3 0 0.868185 0 0 0.1086 0.008444 0.008169 0.001671 0.004932
A 3 Y3 0 0 0.823402 0 0.14322 0.012453 0.010085 0.002494 0.008346
A 4 Y3 0 0 0 0.758853 0.178104 0.024061 0.016185 0.00652 0.016278
A 5 Y3 0 0 0 0 0.798871 0.031061 0.081029 0.021842 0.067197
A 6 Y3 0 0 0 0 0.298265 0.213144 0.150618 0.049483 0.288489
A 7 Y3 0 0 0 0 0.179519 0.021707 0.239906 0.084662 0.474207
A 8 Y3 0 0 0 0 0.039876 0.005683 0.022931 0.053959 0.877551
A 9 Y3 0 0 0 0 0.010017 0.001072 0.00444 0.003509 0.980962
B 1 Y1 0.932606 0 0 0 0.059015 0.002698 0.003264 0.00071 0.001707
B 2 Y1 0 0.868185 0 0 0.1086 0.008444 0.008169 0.001671 0.004932
B 3 Y1 0 0 0.823402 0 0.14322 0.012453 0.010085 0.002494 0.008346
B 4 Y1 0 0 0 0.758853 0.178104 0.024061 0.016185 0.00652 0.016278
B 5 Y1 0 0 0 0 0.798871 0.031061 0.081029 0.021842 0.067197
B 1 Y2 0.932606 0 0 0 0.059015 0.002698 0.003264 0.00071 0.001707
B 2 Y2 0 0.868185 0 0 0.1086 0.008444 0.008169 0.001671 0.004932
B 3 Y2 0 0 0.823402 0 0.14322 0.012453 0.010085 0.002494 0.008346
B 4 Y2 0 0 0 0.758853 0.178104 0.024061 0.016185 0.00652 0.016278
B 5 Y2 0 0 0 0 0.798871 0.031061 0.081029 0.021842 0.067197
B 1 Y3 0.932606 0 0 0 0.059015 0.002698 0.003264 0.00071 0.001707
B 2 Y3 0 0.868185 0 0 0.1086 0.008444 0.008169 0.001671 0.004932
B 3 Y3 0 0 0.823402 0 0.14322 0.012453 0.010085 0.002494 0.008346
B 4 Y3 0 0 0 0.758853 0.178104 0.024061 0.016185 0.00652 0.016278
B 5 Y3 0 0 0 0 0.798871 0.031061 0.081029 0.021842 0.067197
;
run;
proc iml;
vnames=contents(have);
var_c=vnames[loc(prxmatch('/^c\d+\s*$/i',vnames))];
use have;
read all var{p_id};
id=t(p_id[uniqueby(p_id)]);
do i=1 to ncol(id);
read all var {year} where (p_id=(id[i]));
read all var var_c where (p_id=(id[i])) into c;
y=t(year[uniqueby(year)]);
do j=1 to ncol(y)-1;
idx_y1=loc(year=(y[j]));
idx_y2=loc(year=(y[j+1]));
y1=c[idx_y1,1:ncol(idx_y1)];
y2=c[idx_y2,1:ncol(idx_y2)];
yxy=y1*y2;
want=yxy[,1:(ncol(yxy)-1)]*y2[1:(ncol(yxy)-1),ncol(yxy)];
label="Result for: "+id[i]+" ("+y[j]+"-"+y[j+1]+")";
label=repeat(label,nrow(want));
labels=labels//label;
wants=wants//want;
end;
end;
close;
create want from wants[r=labels];
append from wants[r=labels];
close;
quit;
It's finally time to hack! Remember to visit the SAS Hacker's Hub regularly for news and updates.
Check out this tutorial series to learn how to build your own steps in SAS Studio.
Find more tutorials on the SAS Users YouTube channel.
Ready to level-up your skills? Choose your own adventure.