BookmarkSubscribeRSS Feed
DarioM
Calcite | Level 5
Hi, I am making various models for rare target data. I have made log. Regression, regression, ensemble, and gradient boosting. When I model compare, I find different chosen models for different “selection statistic” metrics. I am wondering which metric would be best to evaluate to decide my final model for this model use case?

Can I find AUROC on Miner as well?

Also, I am wanting to use random forest model as well, but I get an error when I use 20 samples, apply LARS and partition the data, not sure what the step before the Forest node is (because the old version of miner had a node for this but I am using 14.2 and it does not exist), so I get an error when trying to run the forest. It says “must use at least one input or rejected variable”, and I am not sure how to fix this and get the forest to run. Thanks.

sas-innovate-2026-white.png



April 27 – 30 | Gaylord Texan | Grapevine, Texas

Registration is open

Walk in ready to learn. Walk out ready to deliver. This is the data and AI conference you can't afford to miss.
Register now and save with the early bird rate—just $795!

Register now

How to choose a machine learning algorithm

Use this tutorial as a handy guide to weigh the pros and cons of these commonly used machine learning algorithms.

Find more tutorials on the SAS Users YouTube channel.

Discussion stats
  • 0 replies
  • 638 views
  • 0 likes
  • 1 in conversation