Estimating the Standard Deviation of a Variable in a Finite Population

Started ‎12-20-2023 by
Modified ‎12-20-2023 by
Views 18,930

Overview

 

The finite population standard deviation of a variable provides a measure of the amount of variation in the corresponding attribute of the study population’s members, thus helping to describe the distribution of a study variable. Whether your survey is measuring crop yields, adult alcohol consumption, or the body mass index (BMI) of school children, a small population standard deviation is indicative of uniformity in the population, while a large standard deviation is indicative of a more diverse population.

 

Suppose you have data that were sampled according to some complex survey design. The SURVEYMEANS procedure enables you to estimate sample totals, means, and ratios, as well as the design-based variances of the estimated quantities, but it does not directly compute the standard deviation of a variable. However, because a standard deviation can be expressed mathematically as a function of a total, you can easily estimate the finite population standard deviation S of a variable by using PROC SURVEYMEANS plus a little SAS programming.

 

Whenever you estimate a population parameter such as a mean or a standard deviation, you should also report the precision of the estimate. The most commonly reported measure of precision is the variance (or its square root, the standard error). The survey analysis procedures in SAS/STAT software currently provide three different variance estimation methods for complex survey designs: the Taylor series linearization method, the delete-one jackknife method, and the balanced repeated replication (BRR) method. This example demonstrates how to use all three methods to estimate the variance stat_webex_svystd0002.png.

Analysis

Suppose you want to estimate the standard deviation of a variable from a finite population by using data that were collected using some complex survey design. The finite population standard deviation of y is 

stat_webex_svystd0004.png

 (1)

 

 

where N is the total number of elements in the population, yi is the ith observation of the variable y, and stat_webex_svystd0008.png is the population mean of y. A sample-based statistic of S is

 

 stat_webex_svystd0009.png

 (2)

 

where stat_webex_svystd0010.png is an estimator of the population total stat_webex_svystd0011.png, is an estimator of the population mean, n is the number of elements in the sample, and πk is the probability that element is observed in the sample.

 

To estimate stat_webex_svystd0015.png, you first estimate both stat_webex_svystd0016.png and stat_webex_svystd0017.png with PROC SURVEYMEANS. Next, you generate a variable (call it z) such that each observation zk is equal to

 

stat_webex_svystd0020.png

 (3)

 

Now you use PROC SURVEYMEANS to estimate the total of z. The square root of the estimated weighted total of is equal to stat_webex_svystd0015.png. Estimating stat_webex_svystd0002.png, the variance of stat_webex_svystd0015.png, requires some additional SAS programming.

 

Using the Taylor Series Linearization Method to Estimate 

 

To estimate stat_webex_svystd0022.png by using the Taylor series linearization method, construct a variable u, such that

 

stat_webex_svystd0024.png

 (4)

 

 

where stat_webex_svystd0015.png is computed as in equation (2). Use PROC SURVEYMEANS to estimate the total (and the variance of the total) of u. The total that is computed by PROC SURVEYMEANS is of no interest, but the variance of the total is equal to stat_webex_svystd0022.png, the variance of the estimate (Särndal, Swensson, and Wretman 1992 , chap. 5.5).

 

The following steps summarize how you estimate S, the finite population standard deviation of a variable y, and stat_webex_svystd0002.png, the variance of the finite population standard deviation estimator (using the Taylor series linearization method):

 

  1. Use PROC SURVEYMEANS to estimate the sample mean of the variable y, and save the estimated mean. PROC SURVEYMEANS also computes the sum of the sampling weights, which is the value of stat_webex_svystd0016.png in the analysis. Save that value also; it is used in the construction of z.

  2. Using the sample mean from step 1, construct the variable u as in equation (3).

  3. Use PROC SURVEYMEANS to estimate the weighted total of the variable z. Save the estimated total, which is the estimate of the population variance (stat_webex_svystd0026.png). Take the square root of the weighted total. Save the result, which is the estimate of the finite population standard deviation.

  4. Construct the variable u as in equation (4).

  5. Use PROC SURVEYMEANS to estimate the weighted total (and the variance of the total) of the variable u. The estimated variance of this total obtained from PROC SURVEYMEANS is an estimator of the variance of stat_webex_svystd0015.png.


Example

Ice Cream Study Data Set

 

This example uses the IceCreamStudy data set from the example "Stratified Cluster Sample Design" in the chapter "The SURVEYMEANS Procedure" of the SAS/STAT User's Guide.

The study population is a junior high school with a total of 4,000 students in grades 7, 8, and 9. In the original example, researchers want to know how much these students spend weekly for ice cream, on the average, and what percentage of students spend at least $10 weekly for ice cream. This example measures the variability of the students’ expenditures by estimating S2, the variance of the variable that contains the students’ expenditures.

 

Suppose that every student belongs to a study group and that study groups are formed within each grade level. Each study group contains between two and four students. Table 1 shows the total number of study groups and the total number of students for each grade.

Table 1 Study Groups and Students by Grade

Grade

Number of Study Groups

Number of Students

7

608

1,824

8

252

1,025

9

403

1,151

It is quicker and more convenient to collect data from students in the same study group than to collect data from students individually. Therefore, this study uses a stratified clustered sample design. The primary sampling units are study groups. The list of all study groups in the school is stratified by grade level. From each grade level, a sample of study groups is randomly selected, and all students in each selected study group are interviewed. The sample consists of eight study groups from the 7th grade, three groups from the 8th grade, and five groups from the 9th grade.

 

The SAS data set IceCreamStudy saves the responses of the selected students:

data IceCreamStudy;
   input Grade StudyGroup Spending Weight @@;
   datalines;
7  34  7 76.0   7  34  7 76.0  7 412  4 76.0  9  27 14 80.6
7  34  2 76.0   9 230 15 80.6  9  27 15 80.6  7 501  2 76.0
9 230  8 80.6   9 230  7 80.6  7 501  3 76.0  8  59 20 84.0
7 403  4 76.0   7 403 11 76.0  8  59 13 84.0  8  59 17 84.0
8 143 12 84.0   8 143 16 84.0  8  59 18 84.0  9 235  9 80.6
8 143 10 84.0   9 312  8 80.6  9 235  6 80.6  9 235 11 80.6
9 312 10 80.6   7 321  6 76.0  8 156 19 84.0  8 156 14 84.0
7 321  3 76.0   7 321 12 76.0  7 489  2 76.0  7 489  9 76.0
7  78  1 76.0   7  78 10 76.0  7 489  2 76.0  7 156  1 76.0
7  78  6 76.0   7 412  6 76.0  7 156  2 76.0  9 301  8 80.6
;

Table 2 identifies the variables contained in the data set IceCreamStudy.

Table 2 Variables in IceCreamStudy Data Set

Variable

Description

Grade

Student’s grade (strata)

StudyGroup

Student’s study group (PSU)

Spending

Student’s expenditure per week for ice cream, in dollars

Weight

Sampling weights

The SAS data set StudyGroup is created to provide PROC SURVEYMEANS with the sample design information shown in Table 1. The variable Grade identifies the strata, and the variable _TOTAL_ contains the total number of study groups in each stratum.

data StudyGroups;
   input Grade _total_;
   datalines;
7 608
8 252
9 403
;

Step 1: Compute stat_webex_svystd0017.png and stat_webex_svystd0016.png

Use PROC SURVEYMEANS to obtain an estimate of the sample mean. Specify the MEAN and STACKING options in the PROC SURVEYMEANS statement. The STACKING option causes the procedure to create an output data set with a single observation. This table structure makes it easy in later steps to identify the saved estimates and to assign their values to macro variables. The WEIGHT statement specifies that the variable Weight contain the sampling weights. The STRATA statement specifies that the variable Grade identifies strata membership. The CLUSTER statement specifies that the variable StudyGroup identifies cluster (or PSU) membership. The ODS OUTPUT statement requests output data sets for the statistics and data summary tables, to be named Statistics and Summary, respectively. The sample mean is stored in the data set Statistics. The data set Summary contains the sum of the sampling weights, the number of strata, and the number of clusters. The sum of the sampling weights is needed to compute stat_webex_svystd0015.png; the number of strata and the number of clusters are used later to compute confidence limits for stat_webex_svystd0015.png.

proc surveymeans data=IceCreamStudy mean stacking ;
   weight Weight;
   strata Grade;
   cluster StudyGroup;
   var Spending;
   ods output Statistics = Statistics
              Summary = Summary;
run;

The following DATA step saves the sample mean of the variable Spending in a macro variable named Spending_Mean:

data _null_;
   set Statistics;
   call symput("Spending_Mean",Spending_Mean);
run;

The next DATA step saves the sum of the sampling weights in a macro variable named N, the number of strata in a macro variable named H, and the number of clusters in a macro variable named C:

data Summary;
   set Summary;
   if Label1="Sum of Weights" then call symput("N",cValue1);
   if Label1="Number of Strata" then call symput("H",cValue1);
   if Label1="Number of Clusters" then call symput("C",cValue1);
run;


Step 2: Construct the Variable z

 

Construct the variable in a DATA step by using the macro variables Spending_Mean and N:

data Working;
   set IceCreamStudy;
   z=(1/(&N-1))*(Spending-&Spending_Mean)**2;
run;

Step 3: Estimate the Total of and Take the Square Root of the Total

Use PROC SURVEYMEANS to estimate the weighted total of the variable z. Specify the SUM and STACKING options in the PROC SURVEYMEANS statement. The ODS OUTPUT statement saves the statistics table to a data set named Result.

proc surveymeans data = Working sum stacking;
   weight Weight;
   var z;
   ods output Statistics = Result;
run;

The following DATA step retrieves the estimated total of and stores it in a macro variable named Variance. The total of z is equal to stat_webex_svystd0026.png. Take the square root of the estimated total and store it in a macro variable named StdDev. The square root of the estimated total is the finite population standard deviation stat_webex_svystd0015.png.

data Result;
   set Result;
   StdDev=sqrt(z_Sum);
   call symput("Variance",z_Sum);
   call symput("StdDev",StdDev);
run;

Step 4: Construct the Variable u

 

Construct the variable u by using the macro variables Spending_Mean, N, Variance, and StdDev.

data Taylor;
   set IceCreamStudy;
   u=((Spending-&Spending_Mean)**2 - &Variance)/(2*&StdDev*(&N-1));
run;

 

Step 5: Estimate the Total of u

 

Use PROC SURVEYMEANS to estimate the total of the variable u. Specify the SUM, VARSUM, TOTAL=, and STACKING options in the PROC SURVEYMEANS statement. The VARSUM option computes the variance of the total. In this step, the computation of interest is the variance of the estimated total rather than the total itself. Therefore, the sampling design must be appropriately represented in the SURVEYMEANS procedure. The TOTAL= option enables the procedure to apply a finite population correction in the variance computation. The STRATA statement specifies that the strata be identified by the variable Grade, and the CLUSTER statement specifies that cluster membership be identified by the variable StudyGroup. The ODS OUTPUT statement saves the statistics table in a data set named Result.

proc surveymeans data = Taylor sum varsum stacking total=StudyGroups;
   strata Grade;
   cluster StudyGroup;
   weight Weight;
   var u;
   ods output Statistics = Result;
run;

The following DATA step creates the variable Estimate in the data set Result and assigns it the value of stat_webex_svystd0015.png that is stored in the macro variable StdDev. The 95% confidence limits are computed, and the data set Result is prepared for printing.

%let df=%eval(&C - &H);

data Result;
   set Result(rename=(u_VarSum=Variance
                      u_StdDev=StdErr));
   Estimate=&StdDev;
   LowerCL= Estimate + StdErr*TINV(.025,&df);
   UpperCL= Estimate + StdErr*TINV(.975,&df);
   label Estimate=Population Standard Deviation Estimate
         Variance=Variance of Estimate
         StdErr=Standard Error of Estimate
         LowerCL=Lower Confidence Limit
         UpperCL=Upper Confidence Limit;
   Variable='Spending';
run;

Use PROC PRINT to print the contents of the data set Result:

title 'Parameter Estimates';

proc print data=Result label noobs;
   var Variable Estimate Variance StdErr LowerCL UpperCL;
run;

title ;

Output 1 displays the results. The estimate of the population standard deviation of the variable Spending is 5.33. The variance of the estimate is 0.245. The standard error of the estimate is 0.49, and the estimated lower and upper 95% confidence limits are 4.27 and 6.40, respectively.

 

Output 1 Estimate of Finite Population Standard Deviation
Parameter Estimates

 

Variable Population Standard
Deviation Estimate
Variance of Estimate Standard Error of
Estimate
Lower Confidence
Limit
Upper Confidence
Limit
Spending 5.33483 0.244809 0.494782 4.26592 6.40374

 


Using the Delete-One Jackknife Method to Estimate stat_webex_svystd0025.png

 

The delete-one jackknife resampling method of variance estimation deletes one primary sampling unit (PSU) at a time from the full sample to create R replicates, where is the total number of PSUs. In each replicate, the sample weights of the remaining PSUs are modified by the jackknife coefficient αr. The modified weights are called replicate weights.

 

If stat_webex_svystd0031.png is the estimate of S obtained using only the data and the replicate weights from the rth replicate, the jackknife variance estimate stat_webex_svystd0025.png is

 

stat_webex_svystd0033.png

 (5)

 

with R H degrees of freedom, where αr is the jackknife coefficient for the rth replicate, R is the number of replicates, and is the number of strata (or – 1 when there is no stratification). See the section Jackknife Method in the chapter "The SURVEYMEANS Procedure" of the SAS/STAT User's Guide for more details.

 

Recall that when you construct zk, you use estimates of stat_webex_svystd0017.png and stat_webex_svystd0016.png that are computed by using the full sample. However, the jackknife variance estimator requires that the stat_webex_svystd0031.png be computed from the rth replicate. Thus, the jackknife estimate of the variance of the total of is not equal to the jackknife estimate of the variance of stat_webex_svystd0015.png.

 

The following steps summarize how you estimate stat_webex_svystd0015.png, the finite population standard deviation of a variable y, and stat_webex_svystd0002.png, the variance of the finite population standard deviation estimator (using the delete-one jackknife method):

 

  1. Use PROC SURVEYMEANS to estimate the sample mean stat_webex_svystd0017.png and the sum of the weights stat_webex_svystd0016.png for the full sample. Save both estimates as they are used in the construction of z.

  2. Construct zas in equation (3), using the full-sample estimates of stat_webex_svystd0017.png and stat_webex_svystd0016.png obtained in step 1.

  3. Use PROC SURVEYMEANS to estimate the weighted total of the variable z. Take the square root of the total, and save the result, which is the full-sample estimate of the population standard deviation (stat_webex_svystd0015.png). When you estimate the total, specify the VARMETHOD=JACKKNIFE option and the OUTWEIGHTS= and OUTJKCOEFS= method-options in the PROC SURVEYMEANS statement. Both the OUTWEIGHTS= and OUTJKCOEFS= data sets are used in later steps.

  4. For each replicate, use PROC SURVEYMEANS to compute the sample mean stat_webex_svystd0037.png and the sum of the weights stat_webex_svystd0038.png by using only the data and replicate weights for the rth replicate. Save the estimates for later use.

  5. For each replicate, using the estimates for stat_webex_svystd0037.png and stat_webex_svystd0038.png that were obtained in step 4, construct the variable z such that 

    stat_webex_svystd0039.png

     (6)


  6. Use PROC SURVEYMEANS to estimate the weighted total of by replicate. Take the square root of each estimated total, and save the results for later use. The square root of the estimated weighted total of zr  is equal to stat_webex_svystd0031.png for the rth replicate.

  7. Construct a variable (call it u) by using the estimates stat_webex_svystd0031.png from step 6, the jackknife coefficients, and the full-sample estimate stat_webex_svystd0015.png from step 3 such that


    stat_webex_svystd0042.png

  8. Use PROC SURVEYMEANS to estimate the unweighted total of the variable from step 7. The estimated unweighted total of is stat_webex_svystd0025.png, the delete-one jackknife estimate of the variance of stat_webex_svystd0015.png.

Example

This example uses the same IceCreamStudy data set that was described in the section Ice Cream Study Data Set and reproduces the steps described in the section Using the Delete-One Jackknife Method to Estimate stat_webex_svystd0025.png. Steps 1 and 2 are identical to the first two steps in the previous example but are repeated here for completeness.

Step 1: Compute stat_webex_svystd0017.png and stat_webex_svystd0016.png for the Full Sample

 

Use PROC SURVEYMEANS to obtain an estimate of the sample mean. Specify the MEAN and STACKING options in the PROC SURVEYMEANS statement. The WEIGHT statement specifies that the variable Weight contain the sampling weights. The STRATA statement specifies that the variable Grade identifies strata membership. The CLUSTER statement specifies that the variable StudyGroup identifies cluster (or PSU) membership. The ODS OUTPUT statement creates output data sets for the statistics and data summary tables, to be named Statistics and Summary, respectively. The sample mean is stored in the data set Statistics. The data set Summary contains the sum of the sampling weights and the number of strata.

proc surveymeans data=IceCreamStudy mean stacking ;
   weight Weight;
   strata Grade;
   cluster StudyGroup;
   var Spending;
   ods output Statistics = Statistics
              Summary = Summary;
run;

The following DATA step saves the sample mean of the variable Spending in a macro variable named Spending_Mean:

data _null_;
   set Statistics;
   call symput("Spending_Mean",Spending_Mean);
run;

The next DATA step saves the sum of the sampling weights in a macro variable named N and the number of strata in a macro variable named H:

data Summary;
   set Summary;
   if Label1="Sum of Weights" then call symput("N",cValue1);
   if Label1="Number of Strata" then call symput("H",cValue1);
run;

Step 2: Construct the Variable z Using the Full-Sample Estimates of stat_webex_svystd0017.png and stat_webex_svystd0016.png

 

Construct the variable z in a DATA step using the macro variables Spending_Mean and N: 

data Working;
   set IceCreamStudy;
   Z=(1/(&N-1))*(Spending-&Spending_Mean)**2;
run;

 

 

Step 3: Estimate the Total of z for the Full Sample

Use PROC SURVEYMEANS to estimate the weighted total of the variable z. Specify the SUM and STACKING options in the PROC SURVEYMEANS statement. Also specify the VARMETHOD=JACKKNIFE option with the OUTJKCOEFS= and OUTWEIGHTS= method-options. The OUTJKCOEFS= method-option saves the jackknife coefficients in a SAS data set named Jkcoefs. The OUTWEIGHTS= method-option saves the replicate weights in a SAS data set named Jkweights.

In this step you must fully specify the sampling design so that the jackknife coefficients and replicate weights are computed correctly. The STRATA statement specifies that the strata be identified by the variable Grade. The CLUSTER statement specifies that the PSUs be identified by the variable StudyGroup. The WEIGHT statement specifies that the full-sample sampling weights be contained in the variable Weight. The ODS OUTPUT statement saves the statistics table to a data set named Result and the variance estimation table to a data set named VarianceEstimation.

proc surveymeans data=Working sum stacking
                 varmethod=JACKKNIFE(outjkcoefs=Jkcoefs outweights=Jkweights);
   strata Grade /list;
   cluster StudyGroup;
   weight Weight;
   var z;
   ods output Statistics = Result
              VarianceEstimation=VarianceEstimation;
run;

You can see from the "Variance Estimation" table in Output 2 that there are 16 replicates.

 

Output 2 Estimate of Population Variance
The SURVEYMEANS Procedure

 

Data Summary
Number of Strata 3
Number of Clusters 16
Number of Observations 40
Sum of Weights 3162.6

 

 

Variance Estimation
Method Jackknife
Number of Replicates 16

 

 

The next DATA step retrieves the number of replicates and stores the value in a macro variable named R:

data _null_;
   set VarianceEstimation;
   where label1="Number of Replicates";
   call symput("R",cvalue1);
run;

%let R=%eval(&R);

The data set Jkcoefs has 16 observations, one for each replicate. The rth observation contains the jackknife coefficient for the rth replicate. The data set Jkweights contains the original variables from the IceCreamStudy data set and 16 new variables named RepWgt_1 through RepWgt_16; there are = 40 observations.

The following DATA step retrieves the estimated total of the variable z, takes the square root of the estimated total, and stores it in a macro variable named StdDev. The square root of the weighted total of the variable z is stat_webex_svystd0015.png.

data _null_;
   set Result;
   StdDev=sqrt(Z_Sum);
   call symput("StdDev",StdDev);
run;

 

Step 4: Compute stat_webex_svystd0017.png and stat_webex_svystd0016.png for Replicate Samples

Before computing stat_webex_svystd0037.png and stat_webex_svystd0038.png, use the following DATA step to convert the data set Jkweights from wide form to long form; doing so enables you to use BY-group processing with PROC SURVEYMEANS.

data Long(drop= RepWt_1 - RepWt_&R Z);
  set Jkweights;
  array num (*) RepWt_1 - RepWt_&R;
  do replicate=1 to dim(num);
    Jkweight=num(replicate);
   output;
  end;
run;

 

The data set Long has 40 x 16 = 640 observations. There are 16 copies of the original variables from the IceCreamStudy data set stacked on top of each other, and each copy is identified by the variable Replicate. Instead of the 16 replicate weight variables, RepWgt_1 through RepWgt_16, there is now one variable, Jkweight, which is constructed by stacking the variables RepWgt_1 through RepWgt_16 on top of each other. Thus, the first 40 observations contain a copy of the original variables, the contents of RepWgt_1, and the variable Replicate has a value of 1. The second 40 observations contain a copy of the original variables, the contents of RepWgt_2, and the variable Replicate has a value of 2. The remaining observations are constructed and identified similarly.

 

Next, sort the data set Long by Replicate:

proc sort data=Long out=Long;
   by Replicate;
run;

Use PROC SURVEYMEANS to estimate the mean of Spending by Replicate. Doing so produces the estimates of stat_webex_svystd0045.png and stat_webex_svystd0046.png for each replicate. The WEIGHT statement specifies that the sampling weights be contained in the variable Jkweight. The ODS OUTPUT statement saves the sample means (stat_webex_svystd0037.png) in a SAS data set named JKMeans and the sums of the replicate weights (stat_webex_svystd0038.png) in a data set named JKN. By default, the means are stored in a variable named Mean and the sums of the replicate weights are stored in a variable named N.

proc surveymeans data=Long mean;
   weight Jkweight;
   var Spending;
   by Replicate;
   ods output Statistics = JKMeans(keep=Replicate Mean)
              Summary = JKN;
run;

 

Step 5: Construct the Variable z for Replicate Samples

 

Before you can construct the variable z for the replicate samples, you must merge the data sets JKMeans and JKN with Long, by Replicate:

proc sort data=JKMeans out=JKMeans;
   by Replicate;
run;
data JKN(keep=N replicate );
   set JKN(rename=(nvalue1=N));
   where Label1="Sum of Weights";
run;
proc sort data=JKN out=JKN;
   by Replicate;
run; 
data Long;
   merge Long JKN JKMeans;
   by Replicate;
run;
Now construct the variable using the merged data set.
data Long;
   set Long;
   z=(1/(N-1))*(Spending-Mean)**2;
run;

 

Step 6: Estimate the Total of z for Replicate Samples

 

Use PROC SURVEYMEANS to estimate the total of the variable by Replicate. The WEIGHT statement specifies that the sampling weights be contained in the variable Jkweight. You do not need to specify the STRATA and CLUSTER statements. The ODS OUTPUT statement saves the estimated totals in the variable JKEstimate in a SAS data set named Statistics. The estimated totals are the estimates stat_webex_svystd0047.png for each replicate.

proc surveymeans data=Long sum stacking;
   weight Jkweight;
   var z;
   by Replicate;
   ods output Statistics=Statistics(rename=(Z_Sum=JKEstimate));
run;

Take the positive square roots of the estimated totals. The results are the estimates stat_webex_svystd0031.png for each replicate.

data Statistics;
   set Statistics(drop=Z_StdDEV z);
   JKEstimate=sqrt(JKEstimate);
run;

 

Step 7: Construct the Variable u

 

Before you can construct the variable u, you must sort and merge, by Replicate, the data sets Statistics and Jkcoefs:

proc sort data=Statistics out=Statistics;
   by Replicate;
run;
proc sort data=Jkcoefs out=Jkcoefs;
   by Replicate;
run;
data Statistics;
   merge Statistics Jkcoefs;
   by Replicate;
run;

The data set Statistics now contains the jackknife coefficients αr in the variable JKcoefficients and the estimates stat_webex_svystd0031.png in the variable JKEstimate. Construct the variable u by using these variables and the full-sample estimate stat_webex_svystd0015.png that is saved in the macro variable StdDev.

data Statistics;
   set Statistics;
   u=JKcoefficient*(JKEstimate-&StdDev)**2;
run;

 

Step 8: Estimate the Total of u

 

Use PROC SURVEYMEANS to compute the unweighted total of u. Specify the SUM option in the PROC SURVEYMEANS statement. The ODS OUTPUT statement saves the total in a variable named Variance in a SAS data set named Result.

proc surveymeans data=Statistics sum;
   var u;
   ods output Statistics=Result(rename=(sum=Variance));
run;

 

The following DATA step computes the standard error of the estimate and the upper and lower 95% confidence limits. In this example, the confidence limits are computed using a distribution with – H  = 16 – 3 = 13 degrees of freedom. The variable Estimate is generated and assigned the estimated value of stat_webex_svystd0015.png that is stored in the macro variable StdDev. Labels are created for the existing variables, a new variable Variable is generated, and its value is specified to be the name of the variable that is being analyzed (Spending).

%let df=%eval(&R-&H);

data Result;
   set Result;
   StdErr=sqrt(Variance);
   Estimate=&StdDev;
   UpperCL=Estimate + StdErr*TINV(.975,&df);
   LowerCL=Estimate + StdErr*TINV(.025,&df);
   label Estimate=Population Standard Deviation Estimate
         Variance=Variance of Estimate
         StdErr=Standard Error of Estimate
         LowerCL=Lower Confidence Limit
         UpperCL=Upper Confidence Limit;
   Variable='Spending';
run;

Use the PRINT procedure to print the contents of the data set Result:

title 'Parameter Estimates';

proc print data=Result label noobs;
   var Variable Estimate Variance StdErr LowerCL UpperCL;
run;

title ;

Output 3 displays the results. The estimate of the population standard deviation for the variable Spending is 5.33. The variance of the estimate is 0.27, and the standard error of the estimate is 0.52. The estimated lower and upper 95% confidence limits are 4.21 and 6.46, respectively.

 

Output 3 Estimate of Finite Population Standard Deviation
Parameter Estimates

 

Variable Population Standard
Deviation Estimate
Variance of Estimate Standard Error
of Estimate
Lower Confidence
Limit
Upper Confidence
Limit
Spending 5.33483 0.271465 0.52102 4.20923 6.46043

 


 

Using the BRR Method to Estimate stat_webex_svystd0002.png

The BRR method requires that the full sample be drawn by using a stratified sample design with two PSUs per stratum. If H is the total number of strata, the total number of replicates is the smallest multiple of four that is greater than H. Each replicate is obtained by deleting one PSU per stratum according to the corresponding Hadamard matrix and adjusting the original weights for the remaining PSUs. The new weights are called replicate weights.

 

If stat_webex_svystd0031.png is the estimate of S obtained by using only the data and the replicate weights from the rth replicate, the BRR variance estimate stat_webex_svystd0025.png is


stat_webex_svystd0050.png

 (7)

 

 

with degrees of freedom. See the section Balanced Repeated Replication (BRR) Method in the chapter "The SURVEYMEANS Procedure" of the SAS/STAT User's Guide for more details.

Recall that when you construct zk, you use estimates of stat_webex_svystd0017.png and stat_webex_svystd0016.png that are computed by using the full sample. However, the BRR variance estimator requires that the stat_webex_svystd0031.png be computed from the rth replicate. Thus, the BRR estimate of the variance of the total of z is not equal to the BRR estimate of the variance of stat_webex_svystd0015.png.

The following steps summarize how you estimate S, the finite population standard deviation of a variable y, and stat_webex_svystd0002.png, the variance of the finite population standard deviation estimator (using the BRR method):

 

  1. Use PROC SURVEYMEANS to estimate the sample mean stat_webex_svystd0017.png and the sum of the weights stat_webex_svystd0016.png for the full sample. Save both estimates for later use: they are used in the construction of z. Also save the number of strata H for later use.

  2. Construct zk as in equation (3) by using the full-sample estimates of stat_webex_svystd0017.png and stat_webex_svystd0016.png obtained in step 1.

  3. Use PROC SURVEYMEANS to estimate the weighted total of the variable z, take the square root of the estimated total, and save the result. The square root of the estimated total is the full-sample estimate of the population standard deviation (stat_webex_svystd0015.png). When you estimate the total, specify the VARMETHOD=BRR option and the OUTWEIGHTS= method-option in the PROC SURVEYMEANS statement. The OUTWEIGHTS= SAS data set is used in later steps. Also save the number of replicates R for later use.

  4. For each replicate, use PROC SURVEYMEANS to estimate the sample mean stat_webex_svystd0037.pngand the sum of the weights stat_webex_svystd0038.png by using only the data and replicate weights for the rth replicate. Save the estimates for later use.

  5. For each replicate, using the estimates for stat_webex_svystd0037.png and stat_webex_svystd0038.png that were obtained in step 4, construct the variable z such that

     

    stat_webex_svystd0039.png

     (8)



  6. Use PROC SURVEYMEANS to estimate the weighted total of z by replicate, take the positive square root of each estimated total, and save the results for later use. The square root of the estimated weighted total of zr is equal to stat_webex_svystd0031.png for the rth replicate.

  7. Construct a variable (call it u) by using the estimates stat_webex_svystd0031.png from step 6, the number of replicates R, and the full-sample estimate stat_webex_svystd0015.png from step 3 such that

    stat_webex_svystd0042.png

     

  8. Use PROC SURVEYMEANS to estimate the unweighted total of the variable u from step 7. The estimated unweighted total of u is stat_webex_svystd0025.png, the BRR estimate of the variance of stat_webex_svystd0015.png.

Example

This example uses the MUNIsurvey data set from the section Variance Estimation Using Replication Methods in the chapter "The SURVEYMEANS Procedure" of the SAS/STAT User's Guide. The data are not shown here, but a SAS program that generates the data is included in the sample SAS code that you can download for this example.

In the original example, the San Francisco Municipal Railway (MUNI) conducted a survey to estimate the average waiting time for MUNI subway system’s passengers. This example estimates the standard deviation of the passengers’ waiting time.

The study uses a stratified cluster sample design. Each MUNI subway line is a stratum. The subway lines included in the study are 'J-Church,' 'K-Ingleside,' 'L-Taraval,' 'M-Ocean View,' 'N-Judah,' and the street car 'F-Market & Wharves.' The MUNI vehicles in service for these lines during a day are the primary sampling units. Within each stratum, two vehicles (PSUs) are randomly selected. Then the waiting times of passengers for a selected MUNI vehicle are collected.

The collected data are saved in the SAS data set MUNIsurvey. Table 3 identifies the variables contained in the data set.

Table 3 Variables in MUNIsurvey Data Set

Variable

Description

Line

The MUNI line that a passenger is riding (strata)

Vehicle

The vehicle that a passenger is boarding (PSU)

Waittime

The time (in minutes) that a passenger waited

Weight

Sampling weights

Step 1: Compute stat_webex_svystd0017.png and stat_webex_svystd0016.png for the Full Sample

Use PROC SURVEYMEANS to obtain estimates of the sample mean (stat_webex_svystd0017.png) and the sum of the sampling weights (stat_webex_svystd0016.png) for the full sample. Specify the MEAN and STACKING options in the PROC SURVEYMEANS statement. The WEIGHT statement specifies that the sampling weights be contained in the variable Weight. The STRATA statement specifies that the strata be identified by the variable Line. The CLUSTER statement specifies that the PSUs be identified by the variable Vehicle. The ODS OUTPUT statement produces output data sets for the statistics and data summary tables, to be named Statistics and Summary, respectively. The sample mean is stored in the data set Statistics. The sum of the sampling weights and the number of strata are stored in the data set Summary.

proc surveymeans data=MUNIsurvey mean stacking ;
   weight Weight;
   strata Line;
   cluster Vehicle;
   var Waittime;
   ods output Statistics = Statistics
              Summary = Summary;
run;

The following DATA step saves the sample mean (stat_webex_svystd0017.png) of the variable Waittime in a macro variable named Waittime_Mean:

data _null_;
   set Statistics;
   call symput("Waittime_Mean",Waittime_Mean);
run;

The next DATA step saves the sum of the sampling weights in a macro variable named N and the number of strata in a macro variable named H:

data Summary;
   set Summary;
   if Label1="Sum of Weights" then call symput("N",cValue1);
   if Label1="Number of Strata" then call symput("H",cValue1);
run;

Step 2: Construct the Variable Using the Full-Sample Estimates of stat_webex_svystd0017.png and stat_webex_svystd0016.png

 

Construct the variable z in a DATA step by using the macro variables Waittime_Mean and N: 

data Working;
   set MUNIsurvey;
   Z=(1/(&N-1))*(Waittime-&Waittime_Mean)**2;
run;

 

Step 3: Estimate the Total of for the Full Sample

Use PROC SURVEYMEANS to estimate the total of the variable z. Specify the SUM and STACKING options in the PROC SURVEYMEANS statement. Also specify the VARMETHOD=BRR OUTWEIGHTS= method-options. The OUTWEIGHTS= method-option saves the replicate weights in a SAS data set named BRRweights.

In this step you must fully specify the sampling design so that the replicate weights are computed correctly. The STRATA statement specifies that the strata be identified by the variable Line. The CLUSTER statement specifies that the PSUs be identified by the variable Vehicle. The WEIGHT statement specifies that the full-sample sampling weights be contained in the variable Weight. The ODS OUTPUT statement saves the statistics table to a data set named Estimate and the variance estimation table to a data set named VarianceEstimation.

proc surveymeans data=Working sum stacking
                 varmethod=brr(outweights=BRRweights);
   strata Line;
   cluster Vehicle;
   weight Weight;
   var z;
   ods output Statistics = Estimate
              VarianceEstimation=VarianceEstimation;
run;
Output 4 Estimate of Population Variance
The SURVEYMEANS Procedure

 

Data Summary
Number of Strata 6
Number of Clusters 12
Number of Observations 1937
Sum of Weights 143040

 

 

Variance Estimation
Method BRR
Number of Replicates 8

 

There are = 1,937 observations and = 8 replicates. The data set BRRweights contains the original variables from the Munisurvey data set and eight new variables named RepWgt_1 through RepWgt_8.

The following DATA step retrieves the estimated total of the variable z, takes the square root of the total, and stores the result in a macro variable named StdDev. The square root of the total of the variable z is equal to stat_webex_svystd0015.png.

data _null_;
   set Estimate;
   StdDev=sqrt(Z_Sum);
   call symput("StdDev",StdDev);
run;

 

The next DATA step retrieves the number of replicates and stores the value in a macro variable named R:

data _null_;
   set VarianceEstimation;
   where label1="Number of Replicates";
   call symput("R",cvalue1);
run;

%let R=%eval(&R);

 

Step 4: Compute stat_webex_svystd0017.png and stat_webex_svystd0016.png for Replicate Samples

 

Before computing stat_webex_svystd0037.png and stat_webex_svystd0038.png, use the following DATA step to convert the data set BRRweights from wide form to long form; doing so enables you to use BY-group processing with PROC SURVEYMEANS.

data Long(drop= RepWt_1 - RepWt_&R Z);
  set BRRweights;
  array num (*) RepWt_1 - RepWt_&R;
  do replicate=1 to dim(num);
    BRRweight=num(replicate);
   output;
  end;
run;

 

The data set Long has 1,937 x 8 = 15,496 observations. There are eight copies of the original variables from the Munisurvey data set stacked on top of each other, and each copy is identified by the variable Replicate. Instead of the eight replicate weight variables, RepWgt_1 through RepWgt_8, there is now one variable, BRRweight, which is constructed by stacking the variables RepWgt_1 through RepWgt_8 on top of each other. Thus, the first 1,937 observations contain a copy of the original variables and the contents of RepWgt_1, and the variable Replicate has a value of 1. The second 1,937 observations contain a copy of the original variables and the contents of RepWgt_2, and the variable Replicate has a value of 2. The remaining observations are constructed and identified similarly.

Next, sort the data set Long by Replicate:

proc sort data=Long out=Long;
   by Replicate;
run;

 

Use PROC SURVEYMEANS to estimate the mean of Waittime by Replicate. Doing so produces the estimates of stat_webex_svystd0037.png and stat_webex_svystd0038.png for each replicate. The WEIGHT statement specifies that the sampling weights be contained in the variable BRRweight. The ODS OUTPUT statement saves the sample means in a SAS data set named BRRMeans and the sum of the replicate weights in a data set named BRRN.

proc surveymeans data=Long mean;
   weight BRRweight;
   var Waittime;
   by Replicate;
   ods output Statistics = BRRMeans(keep=Replicate Mean)
              Summary = BRRN;
run;

  

Step 5: Construct the Variable z

 

Before you can construct the variable z, you must merge the data sets BRRMeans and BRRN with Long by Replicate:

proc sort data=BRRMeans out=BRRMeans;
   by Replicate;
run;
data BRRN(keep=N replicate );
   set BRRN(rename=(nvalue1=N));
   where Label1="Sum of Weights";
run;
proc sort data=BRRN out=BRRN;
   by Replicate;
run;
data Long;
   merge Long BRRN BRRMeans;
   by Replicate;
run;

Now construct the variable z using the merged data set:

data Long;
   set Long;
   z=(1/(N-1))*(Waittime-Mean)**2;
run;

 

Step 6: Estimate the Total of z for the Replicate Samples

Use PROC SURVEYMEANS to estimate the total of the variable z by Replicate. The WEIGHT statement specifies that the sampling weights be contained in the variable BRRweight. You do not need to specify the STRATA and CLUSTER statements. The ODS OUTPUT statement saves the estimated totals in the variable BRREstimate in a SAS data set named Statistics. The estimated totals are the estimates stat_webex_svystd0047.png for each replicate.

proc surveymeans data=Long sum stacking;
   weight BRRweight;
   var z;
   by Replicate;
   ods output Statistics=Statistics(rename=(Z_Sum=BRREstimate));
run; 

Take the square root of each estimated total. The results are the estimates stat_webex_svystd0047.png for each replicate.

data Statistics;
   set Statistics(drop= Z_StdDEV z);
   BRREstimate=sqrt(BRREstimate);
run;

 

 

Step 7: Construct the Variable u

data Statistics;
   set Statistics;
   u=(1/&R)*(BRREstimate-&StdDev)**2;
run;

Step 8: Estimate the Total of u

 

Use PROC SURVEYMEANS to compute the unweighted total of z. Specify the SUM option in the PROC SURVEYMEANS statement. The ODS OUTPUT statement saves the total in a variable named Variance in a SAS data set named Result.

proc surveymeans data=Statistics sum;
   var u;
   ods output Statistics=Result(rename=(sum=Variance));
run;

 

The following DATA step computes the standard error of the estimate and the upper and lower 95% confidence limits. The confidence limits for this example are computed by using a t distribution with H=6 degrees of freedom. The variable Estimate is generated and assigned the estimated value of stat_webex_svystd0015.png, which is stored in the macro variable StdDev. The data set is also prepared for printing.

data Result;
   set Result;
   StdErr=sqrt(Variance);
   Estimate=&StdDev;
   UpperCL=Estimate + StdErr*TINV(.975,&H);
   LowerCL=Estimate + StdErr*TINV(.025,&H);
   Variable='Waittime';
   label Estimate=Population Standard Deviation Estimate
         Variance=Variance of Estimate
         StdErr=Standard Error of Estimate
         LowerCL=Lower Confidence Limit
         UpperCL=Upper Confidence Limit;
run;

Use the PRINT procedure to print the contents of the data set Result:

title 'Parameter Estimates';

proc print data=Result label noobs;
   var Variable Estimate Variance StdErr LowerCL UpperCL;
run;

title ;

Output 5 displays the results. The estimate of the population standard deviation for the variable Waittime is 4.24. The variance of the estimate is 0.03, and the standard error of the estimate is 0.17. The estimated lower and upper 95% confidence limits are 3.82 and 4.67, respectively.

 

Output 5 Estimate of Finite Population Standard Deviation
Parameter Estimates

 

Variable Population Standard
Deviation Estimate
Variance of Estimate Standard Error
of Estimate
Lower Confidence
Limit
Upper Confidence
Limit
Waittime 4.24495 0.029935 0.17302 3.82159 4.66831

 


References

 

Särndal, C. E., Swensson, B., and Wretman, J. (1992), Model Assisted Survey Sampling, New York: Springer-Verlag.

Version history
Last update:
‎12-20-2023 09:27 PM
Updated by:
Contributors

SAS Innovate 2025: Register Now

Registration is now open for SAS Innovate 2025 , our biggest and most exciting global event of the year! Join us in Orlando, FL, May 6-9.
Sign up by Dec. 31 to get the 2024 rate of just $495.
Register now!

SAS Training: Just a Click Away

 Ready to level-up your skills? Choose your own adventure.

Browse our catalog!

Article Labels
Article Tags
Programming Tips
Want more? Visit our blog for more articles like these.