BookmarkSubscribeRSS Feed
IlariaPic
Calcite | Level 5

Hi,

I am working with PROC MIXED to test different treatments after removing the spatial autocorrelation effect by using the semivariogram parameters.

Now, I want to export a dataset with the model estimates and residues for each observation but SAS is copying the same variable estimate for all the observations belonging to the same treatment. I am using the following code, any tip? I am using SAS 9.4. I have attached the database "A". Thanks

 

proc mixed data=A;
class Treat_numb;
model DY=Treat_numb/ ddfm=kr s residual outp=resid;
repeated/ subject=intercept local type=sp(gau)(x y); 
parms (2.58)(46.8)(0.0026)/ noiter;

LSMEANS Treat_numb / ADJUST=TUKEY ;
run;

PROC EXPORT
DATA=resid
dbms=xlsx
outfile= "D:\resid.xlsx"
replace;
quit;

 

 

8 REPLIES 8
Rick_SAS
SAS Super FREQ

I don't know what problem you are encountering, but when I run your code I get the correct result. 

 

Use the following statements to see if the values in the RESID output data set are correct:

proc print data=resid(obs=5);
var x y DY resid;
run;

If the data set is correct, then there is something wrong when you export it. Maybe you are looking at the wrong file.

 

IlariaPic
Calcite | Level 5
It was incorrect because if you look inside the export file, the predicted are always the same value for all the observation inside the same treatment
FreelanceReinh
Jade | Level 19

Hello @IlariaPic and welcome to the SAS Support Communities!

 


@IlariaPic wrote:

(...) SAS is copying the same variable estimate for all the observations belonging to the same treatment. (...)


Do you mean variable Pred in dataset resid?

 

                                                                                                                                     S        P
                                                                                                                                     t        e
                                T                                                     S                                              u        a
                             T  r                                                     t                                              d        r
                             r  e                       N                             d                                              e        s
                             e  a                P      _       N                     E                                              n        o
                             a  t  B             r      u       _                     r                                              t        n
                             t  _  l             o      p       i                     r              A     L       U        R        R        R
                             m  n  o             t      t       n             P       P              l     o       p        e        e        e
 O    n                      e  u  c             e      a       p      N      r       r              p     w       p        s        s        s
 b    u                      n  m  c     D       i      k       u      U      e       e       D      h     e       e        i        i        i
 s  A m     x          y     t  b  o     Y       n      e       t      E      d       d       F      a     r       r        d        d        d

  1 5 2 747594.52 5033041.10 MF 1 BL1 14.2527 6.8567 167.054 199.64 0.8368 15.2242 0.87643 3.62354 0.05 12.6878 17.7606 -0.97150 -0.16113 -0.15946
  2 5 2 747587.52 5033006.10 MF 1 BL1 14.9840 7.2169 184.850 199.64 0.9259 15.2242 0.87643 3.62354 0.05 12.6878 17.7606 -0.24020 -0.03984 -0.03942
  3 5 2 747566.52 5032971.10 MF 1 BL1 17.0357 7.1418 207.976 199.64 1.0418 15.2242 0.87643 3.62354 0.05 12.6878 17.7606  1.81150  0.30046  0.29733
  4 5 2 747580.52 5032943.10 MF 1 BL1 13.8009 7.3158 172.590 199.64 0.8645 15.2242 0.87643 3.62354 0.05 12.6878 17.7606 -1.42330 -0.23607 -0.23361
...

Given your MODEL statement

model DY=Treat_numb/ ...;

isn't it plausible that all observations with the same Treat_numb have the same predicted DY value, i.e., Pred, whereas the residuals (e.g., Resid=DY-Pred) vary between observations?

 

Rick_SAS
SAS Super FREQ

@FreelanceReinh : The OP is using the OUTPREDP= option, which incorporates the random effects. See the last section of this article, which explains the OUTP= vs OUTPREDM= options.

 

I am not sure how you got constant values for the residuals. I did not.

 

Maybe the problem is reading in the data. Let's use this data to debug:

data A;
input x	y		Treat_numb	DY	;
datalines;
747594.5184	5033041.099	1	14.2527	
747587.5184	5033006.099	1	14.984	
747566.5184	5032971.099	1	17.0357	
747580.5184	5032943.099	1	13.8009	
747559.5184	5032908.099	1	15.8453	
747552.5184	5032873.099	1	14.3906	
747538.5184	5032838.099	1	14.6602	
747524.5184	5032803.099	1	14.4836	
747517.5184	5032768.099	1	13.7466	
747496.5184	5032733.099	1	15.3517	
747482.5184	5032698.099	1	16.1853	
747468.5184	5032663.099	1	15.6219	
747874.5184	5032929.099	1	18.8228	
747860.5184	5032887.099	1	16.4776	
747860.5184	5032852.099	1	13.3124	
747832.5184	5032810.099	1	17.1777	
747818.5184	5032775.099	1	17.1091	
747811.5184	5032740.099	1	16.4903	
747797.5184	5032705.099	1	16.2574	
747783.5184	5032670.099	1	17.1503	
747776.5184	5032635.099	1	16.6857	
747762.5184	5032600.099	1	16.521	
747748.5184	5032565.099	1	17.3206	
747741.5184	5032530.099	1	16.8753	
748049.5184	5032852.099	1	15.4865	
748021.5184	5032817.099	1	17.3925	
748021.5184	5032789.099	1	16.3603	
748021.5184	5032761.099	1	14.8172	
747993.5184	5032726.099	1	17.3343	
748000.5184	5032698.099	1	15.4856	
747979.5184	5032663.099	1	15.7408	
747986.5184	5032635.099	1	14.1556	
747965.5184	5032600.099	1	15.5088	
747937.5184	5032565.099	1	18.3992	
747937.5184	5032537.099	1	16.7378	
747937.5184	5032509.099	1	16.1896	
747937.5184	5032481.099	1	14.3255	
747909.5184	5032446.099	1	13.8514	
747678.5184	5032999.099	2	16.1822	
747685.5184	5032971.099	2	14.0734	
747650.5184	5032936.099	2	18.1249	
747650.5184	5032908.099	2	17.3134	
747650.5184	5032880.099	2	15.2376	
747615.5184	5032845.099	2	17.8256	
747615.5184	5032817.099	2	18.2199	
747622.5184	5032789.099	2	14.2636	
747601.5184	5032754.099	2	17.0114	
747580.5184	5032719.099	2	16.8656	
747587.5184	5032691.099	2	13.8307	
747587.5184	5032663.099	2	12.3092	
747552.5184	5032628.099	2	16.1235	
747552.5184	5032600.099	2	15.6561	
747790.5184	5032964.099	2	10.3388	
747769.5184	5032943.099	2	15.0688	
747748.5184	5032922.099	2	19.0251	
747783.5184	5032908.099	2	16.7404	
747762.5184	5032887.099	2	12.7791	
747741.5184	5032866.099	2	15.5261	
747720.5184	5032845.099	2	14.4319	
747755.5184	5032831.099	2	15.1505	
747734.5184	5032810.099	2	12.0431	
747713.5184	5032789.099	2	14.7612	
747692.5184	5032768.099	2	14.1706	
747720.5184	5032754.099	2	13.2452	
747699.5184	5032733.099	2	14.4666	
747678.5184	5032712.099	2	13.5315	
747664.5184	5032691.099	2	14.3379	
747692.5184	5032677.099	2	12.6675	
747671.5184	5032656.099	2	16.0429	
747650.5184	5032635.099	2	14.2039	
747678.5184	5032621.099	2	13.4011	
747657.5184	5032600.099	2	15.4299	
747636.5184	5032579.099	2	15.3095	
747671.5184	5032565.099	2	17.0312	
748140.5184	5032803.099	2	14.8502	
748105.5184	5032768.099	2	14.3607	
748119.5184	5032740.099	2	16.5823	
748091.5184	5032705.099	2	15.8468	
748070.5184	5032670.099	2	13.4072	
748070.5184	5032642.099	2	15.6583	
748070.5184	5032614.099	2	17.3162	
748070.5184	5032586.099	2	16.1352	
748035.5184	5032551.099	2	16.6558	
748035.5184	5032523.099	2	15.7196	
748014.5184	5032488.099	2	13.8037	
748014.5184	5032453.099	2	14.1342	
747993.5184	5032404.099	2	13.5432	
747657.5184	5033006.099	3	15.2529	
747657.5184	5032978.099	3	17.3862	
747629.5184	5032943.099	3	16.2099	
747636.5184	5032915.099	3	17.7711	
747615.5184	5032880.099	3	18.1456	
747587.5184	5032845.099	3	14.3223	
747601.5184	5032817.099	3	17.4219	
747580.5184	5032782.099	3	16.4425	
747580.5184	5032754.099	3	16.5382	
747545.5184	5032719.099	3	13.4946	
747545.5184	5032691.099	3	16.022	
747524.5184	5032656.099	3	14.3681	
747531.5184	5032628.099	3	15.8082	
747958.5184	5032880.099	3	15.4322	
747958.5184	5032852.099	3	16.3397	
747930.5184	5032817.099	3	17.3782	
747937.5184	5032789.099	3	17.4798	
747916.5184	5032754.099	3	17.5616	
747895.5184	5032719.099	3	15.0908	
747902.5184	5032691.099	3	17.0871	
747902.5184	5032663.099	3	17.1576	
747867.5184	5032628.099	3	15.6431	
747867.5184	5032600.099	3	17.921	
747867.5184	5032572.099	3	17.3888	
747846.5184	5032537.099	3	17.0461	
747825.5184	5032502.099	3	15.6876	
747839.5184	5032474.099	3	16.7379	
748021.5184	5032838.099	3	15.7513	
748000.5184	5032803.099	3	16.7668	
747972.5184	5032768.099	3	14.7859	
747986.5184	5032740.099	3	18.8191	
747951.5184	5032705.099	3	13.4772	
747951.5184	5032677.099	3	17.6236	
747951.5184	5032649.099	3	17.9013	
747951.5184	5032621.099	3	17.9448	
747923.5184	5032586.099	3	17.6293	
747930.5184	5032558.099	3	18.582	
747909.5184	5032523.099	3	18.6436	
747881.5184	5032488.099	3	14.9855	
747895.5184	5032460.099	3	17.4526	
747720.5184	5032992.099	4	18.061	
747692.5184	5032957.099	4	15.5041	
747699.5184	5032929.099	4	18.6178	
747678.5184	5032894.099	4	18.1275	
747657.5184	5032859.099	4	14.2819	
747657.5184	5032831.099	4	16.498	
747657.5184	5032803.099	4	18.2596	
747622.5184	5032768.099	4	12.7287	
747622.5184	5032740.099	4	15.1391	
747622.5184	5032712.099	4	17.4723	
747601.5184	5032677.099	4	14.0331	
747608.5184	5032649.099	4	19.3509	
747587.5184	5032614.099	4	17.5156	
747587.5184	5032579.099	4	19.6674	
747902.5184	5032887.099	4	16.042	
747902.5184	5032859.099	4	16.0664	
747867.5184	5032824.099	4	14.5629	
747874.5184	5032796.099	4	18.0023	
747853.5184	5032761.099	4	16.9353	
747860.5184	5032733.099	4	16.4014	
747832.5184	5032698.099	4	15.4785	
747832.5184	5032670.099	4	17.7188	
747832.5184	5032642.099	4	16.7882	
747797.5184	5032607.099	4	14.7846	
747797.5184	5032579.099	4	17.5189	
747797.5184	5032551.099	4	17.3421	
747769.5184	5032516.099	4	15.8409	
748063.5184	5032831.099	4	16.0691	
748042.5184	5032796.099	4	14.4959	
748049.5184	5032768.099	4	17.4157	
748028.5184	5032733.099	4	16.3706	
748028.5184	5032705.099	4	16.2923	
748028.5184	5032677.099	4	16.0381	
747993.5184	5032642.099	4	14.7028	
747993.5184	5032614.099	4	16.0152	
747993.5184	5032586.099	4	17.6182	
747965.5184	5032551.099	4	14.9384	
747979.5184	5032523.099	4	19.1654	
747951.5184	5032488.099	4	15.4053	
747930.5184	5032453.099	4	13.8199	
747944.5184	5032425.099	4	21.6317	
747636.5184	5033020.099	5	12.3816	
747608.5184	5032985.099	5	15.4957	
747587.5184	5032950.099	5	14.6347	
747587.5184	5032922.099	5	17.5501	
747587.5184	5032894.099	5	15.5509	
747587.5184	5032866.099	5	13.6618	
747552.5184	5032831.099	5	17.1552	
747559.5184	5032803.099	5	14.4923	
747531.5184	5032768.099	5	14.7803	
747545.5184	5032740.099	5	12.539	
747517.5184	5032705.099	5	14.7845	
747524.5184	5032677.099	5	13.3654	
747489.5184	5032642.099	5	15.1562	
747937.5184	5032901.099	5	13.6869	
747916.5184	5032866.099	5	16.6175	
747895.5184	5032831.099	5	17.1187	
747895.5184	5032803.099	5	18.3943	
747895.5184	5032775.099	5	15.7501	
747895.5184	5032747.099	5	13.6204	
747860.5184	5032712.099	5	15.4928	
747874.5184	5032684.099	5	12.408	
747846.5184	5032649.099	5	16.9401	
747825.5184	5032614.099	5	17.4945	
747832.5184	5032586.099	5	17.1189	
747804.5184	5032551.099	5	17.1115	
747804.5184	5032523.099	5	18.395	
747804.5184	5032495.099	5	14.8649	
747972.5184	5032859.099	5	16.1744	
747972.5184	5032831.099	5	17.9423	
747979.5184	5032803.099	5	13.1972	
747944.5184	5032768.099	5	19.4707	
747944.5184	5032740.099	5	18.5044	
747944.5184	5032712.099	5	14.8406	
747916.5184	5032677.099	5	18.8137	
747923.5184	5032649.099	5	14.7087	
747902.5184	5032614.099	5	19.3677	
747909.5184	5032586.099	5	12.7397	
747874.5184	5032551.099	5	21.8917	
747874.5184	5032523.099	5	18.6709	
747874.5184	5032495.099	5	13.9388	
747853.5184	5032460.099	5	15.1566	
747734.5184	5032957.099	6	18.0133	
747706.5184	5032908.099	6	17.2544	
747692.5184	5032866.099	6	16.7495	
747692.5184	5032824.099	6	17.3108	
747664.5184	5032775.099	6	18.0998	
747643.5184	5032726.099	6	18.1244	
747636.5184	5032684.099	6	16.2771	
747622.5184	5032642.099	6	16.7599	
747608.5184	5032600.099	6	18.3559	
747825.5184	5032943.099	6	12.8754	
747818.5184	5032922.099	6	14.69	
747804.5184	5032901.099	6	14.4918	
747790.5184	5032880.099	6	15.5778	
747825.5184	5032866.099	6	18.4528	
747811.5184	5032845.099	6	18.3908	
747797.5184	5032824.099	6	17.2848	
747783.5184	5032803.099	6	17.69	
747769.5184	5032782.099	6	17.2365	
747755.5184	5032761.099	6	15.7682	
747741.5184	5032740.099	6	15.0265	
747783.5184	5032726.099	6	18.0318	
747762.5184	5032705.099	6	15.7373	
747748.5184	5032684.099	6	15.8417	
747734.5184	5032663.099	6	15.3374	
747720.5184	5032642.099	6	15.1829	
747706.5184	5032621.099	6	15.1631	
747741.5184	5032607.099	6	17.2197	
747727.5184	5032586.099	6	16.0691	
747713.5184	5032565.099	6	16.0456	
747699.5184	5032544.099	6	17.7802	
748091.5184	5032824.099	6	17.711	
748077.5184	5032782.099	6	16.5784	
748063.5184	5032740.099	6	17.9443	
748042.5184	5032691.099	6	16.9375	
748035.5184	5032649.099	6	16.7367	
748021.5184	5032607.099	6	17.2109	
748007.5184	5032565.099	6	17.6679	
747993.5184	5032523.099	6	18.1028	
747979.5184	5032481.099	6	19.8117	
747965.5184	5032439.099	6	17.7884	
;

proc mixed data=A;
class Treat_numb;
model DY=Treat_numb/ ddfm=kr s residual outp=resid;
repeated/ subject=intercept local type=sp(gau)(x y); 
parms (2.58)(46.8)(0.0026)/ noiter;
LSMEANS Treat_numb / ADJUST=TUKEY ;
run;

proc print data=resid(obs=5); 
var x y DY resid; 
run;

PROC EXPORT
DATA=resid
dbms=xlsx
outfile= "C:\Temp\resid.xlsx"
replace;
quit;

 

 

IlariaPic
Calcite | Level 5

I think I got it!
I am working with spatial data, if I want to have a prediction for each observation I need to use as covariate something like a coordinate or a soil property that is unique for each observation.

Indeed, if I use the following code I get a unique prediction for each observation! Thanks everybody

proc mixed data=A;
class Treat_numb;
model DY=x Treat_numb/ddfm=kr s residual outp=resid;
repeated/ subject=intercept local type=sp(gau)(x y);
parms (2.58)(46.8)(0.0026)/ noiter;

LSMEANS Treat_numb / ADJUST=TUKEY ;
run;

PROC EXPORT
DATA=resid
dbms=xlsx
outfile= "D:\resid.xlsx"
replace;

quit;

 

FreelanceReinh
Jade | Level 19

Hello @Rick_SAS,

 


@Rick_SAS wrote:

I am not sure how you got constant values for the residuals.


My residuals aren't constant (see the partial output I posted), unlike the predicted values (variable Pred) within treatment groups.

Does your PROC PRINT step yield different results than mine? 


Rick_SAS
SAS Super FREQ

@FreelanceReinh : Yes, the predicted values are as you reported. Sorry for the confusion. The output data set was called RESID so in my mind I mistakenly thought the question was about the residuals and I looked at that variable. 

IlariaPic
Calcite | Level 5
Yes exactly, I was not understanding why the "Pred" (predicted values) were all the same inside each treatment

SAS Innovate 2025: Register Now

Registration is now open for SAS Innovate 2025 , our biggest and most exciting global event of the year! Join us in Orlando, FL, May 6-9.
Sign up by Dec. 31 to get the 2024 rate of just $495.
Register now!

Mastering the WHERE Clause in PROC SQL

SAS' Charu Shankar shares her PROC SQL expertise by showing you how to master the WHERE clause using real winter weather data.

Find more tutorials on the SAS Users YouTube channel.

Discussion stats
  • 8 replies
  • 1308 views
  • 0 likes
  • 3 in conversation