Hi @PaigeMiller,
Thank you for your reply.
For full factorial design in case I take Y as a success rate my prediction equation is:
0.12125 + Match( :A, -1, -0.04875, 1, 0.04875, . )
+Match( :B, -1, -0.06375, 1, 0.06375, . )
+Match( :C, -1, -0.00375, 1, 0.00375, . )
+Match( :A,
-1, Match( :B, -1, 0.02625, 1, -0.02625, . ),
1, Match( :B, -1, -0.02625, 1, 0.02625, . ),
.
) + Match( :A,
-1, Match( :C, -1, 0.00625, 1, -0.00625, . ),
1, Match( :C, -1, -0.00625, 1, 0.00625, . ),
.
) + Match( :B,
-1, Match( :C, -1, 0.00625, 1, -0.00625, . ),
1, Match( :C, -1, -0.00625, 1, 0.00625, . ),
.
)
How do I simulate responses based on this model for fractional factorial res III design?
After all I would like to use this responses in this script suggested on JMP forum. Also the actual number of factors I will use is 18 and res iV. The example above is for simplicity.
New Table( "Untitled",
Add Rows( 10 ),
New Column( "A", Numeric, "Nominal", Format( "Best", 12 ),
Formula( Random Integer( 0, 1 ) ) ),
New Column( "B", Numeric, "Nominal", Format( "Best", 12 ),
Formula( Random Integer( 0, 1 ) ) ),
New Column( "C", Numeric, "Nominal", Format( "Best", 12 ),
Formula( Random Integer( 0, 1 ) ) ),
New Column( "Success?", Numeric, "Nominal", Format( "Best", 12 ),
Formula(
If(
:A == 0 & :B == 0 & :C == 0, Random Binomial( 1, 0.05 ),
:A == 0 & :B == 0 & :C == 1, Random Binomial( 1, 0.05 ),
:A == 0 & :B == 1 & :C == 0, Random Binomial( 1, 0.065 ),
:A == 0 & :B == 1 & :C == 1, Random Binomial( 1, 0.065 ),
:A == 1 & :B == 0 & :C == 0, Random Binomial( 1, 0.055 ),
:A == 1 & :B == 0 & :C == 1, Random Binomial( 1, 0.055 ),
:A == 1 & :B == 1 & :C == 0, Random Binomial( 1, 0.075 ),
:A == 1 & :B == 1 & :C == 1, Random Binomial( 1, 0.075 ),
Random Binomial( 1, 0.05 ) ) ) ) )