Hello. I'm really new to SAS Studio programming and I have a question about my code.
I have a dataset consisting of numbers regarding different products. I have in total 31 products with different values of the numbers stated in [box] (c1, D, cap1) etc. The thing is that I want to loop the minimalization object function Z for all 31 products so that they don't affect each other's values of the variable Q and Z.
Which it seems like they do now since I'm not doing a loop for one product at the time. But I just can't figure out how I'm going to do it.
proc import out=indata
DATAFILE='/home/phjesper0/Master/Minresultater1.xlsx'
DBMS=XLSX replace;
GETNAMES=YES;
/*USEDATE=YES;*/
title 'Vanlige tall';
proc print data=indata;
run;
Proc optmodel;
set <str> box;
var Q{box} >=0;
number c1{box};
number D{box};
number cap1{box};
number r1{box};
number r2{box};
number o1{box};
number f{box};
number o2{box};
number c2{box};
number p1{box};
number p2{box};
number cap2{box};
number life{box};
number w{box};
read data indata into box=[type] c1 D cap1 r1 r2 o1 f o2 c2 p1 p2 cap2 life w;
print c1 D cap1 r1 r2 o1 f o2 c2 p1 p2 cap2 life w;
minimize Z = sum {i in box} (((Q[i]/2)*((c1[i]*r1[i])+(c2[i]*r2[i]*f[i])))
+(D[i]/Q[i])*(((o1[i]*p1[i]) + (o2[i]*p2[i]*f[i]))*300 + (w[i]*c1[i])));
con MinShelfLife{i in box}:(life[i]-((360)/(D[i]/Q[i]))) >= 120;
con MaxShiftSize1{i in box}: Q[i]/cap1[i] <= 2;
con MaxShiftSize2{i in box}: Q[i]/(f[i]*cap2[i]) <= 2;
con MinBatch{i in box}: Q[i] >= 0;
solve;
print Z Q;
quit;
Thanks!
If you want to solve a separate problem for each i in box, you can do the following:
Proc optmodel;
set <str> box;
var Q >= 0;
number c1{box};
number D{box};
number cap1{box};
number r1{box};
number r2{box};
number o1{box};
number f{box};
number o2{box};
number c2{box};
number p1{box};
number p2{box};
number cap2{box};
number life{box};
number w{box};
read data indata into box=[type] c1 D cap1 r1 r2 o1 f o2 c2 p1 p2 cap2 life w;
print c1 D cap1 r1 r2 o1 f o2 c2 p1 p2 cap2 life w;
str i_this;
minimize Z = ((Q/2)*((c1[i_this]*r1[i_this])+(c2[i_this]*r2[i_this]*f[i_this])))
+(D[i_this]/Q)*(((o1[i_this]*p1[i_this]) + (o2[i_this]*p2[i_this]*f[i_this]))*300 + (w[i_this]*c1[i_this]));
con MinShelfLife:(life[i_this]-((360)/(D[i_this]/Q))) >= 120;
con MaxShiftSize1: Q/cap1[i_this] <= 2;
con MaxShiftSize2: Q/(f[i_this]*cap2[i_this]) <= 2;
num Qsol {box};
num Zsol {box};
for {i in box} do;
i_this = i;
solve;
print Q Z;
Qsol[i] = Q;
Zsol[i] = Z;
end;
print Qsol Zsol;
quit;
Note that I removed the MinBatch constraint, which is redundant because of the >= 0 in the VAR statement.
By the way, you can also solve these independent problems concurrently by changing FOR to COFOR.
For a similar example, see Efficiency Analysis: How to Use Data Envelopment Analysis to Compare Efficiencies of Garages.
If you want to solve a separate problem for each i in box, you can do the following:
Proc optmodel;
set <str> box;
var Q >= 0;
number c1{box};
number D{box};
number cap1{box};
number r1{box};
number r2{box};
number o1{box};
number f{box};
number o2{box};
number c2{box};
number p1{box};
number p2{box};
number cap2{box};
number life{box};
number w{box};
read data indata into box=[type] c1 D cap1 r1 r2 o1 f o2 c2 p1 p2 cap2 life w;
print c1 D cap1 r1 r2 o1 f o2 c2 p1 p2 cap2 life w;
str i_this;
minimize Z = ((Q/2)*((c1[i_this]*r1[i_this])+(c2[i_this]*r2[i_this]*f[i_this])))
+(D[i_this]/Q)*(((o1[i_this]*p1[i_this]) + (o2[i_this]*p2[i_this]*f[i_this]))*300 + (w[i_this]*c1[i_this]));
con MinShelfLife:(life[i_this]-((360)/(D[i_this]/Q))) >= 120;
con MaxShiftSize1: Q/cap1[i_this] <= 2;
con MaxShiftSize2: Q/(f[i_this]*cap2[i_this]) <= 2;
num Qsol {box};
num Zsol {box};
for {i in box} do;
i_this = i;
solve;
print Q Z;
Qsol[i] = Q;
Zsol[i] = Z;
end;
print Qsol Zsol;
quit;
Note that I removed the MinBatch constraint, which is redundant because of the >= 0 in the VAR statement.
By the way, you can also solve these independent problems concurrently by changing FOR to COFOR.
For a similar example, see Efficiency Analysis: How to Use Data Envelopment Analysis to Compare Efficiencies of Garages.
Registration is open! SAS is returning to Vegas for an AI and analytics experience like no other! Whether you're an executive, manager, end user or SAS partner, SAS Innovate is designed for everyone on your team. Register for just $495 by 12/31/2023.
If you are interested in speaking, there is still time to submit a session idea. More details are posted on the website.
Learn how to run multiple linear regression models with and without interactions, presented by SAS user Alex Chaplin.
Find more tutorials on the SAS Users YouTube channel.