BookmarkSubscribeRSS Feed
RobPratt
SAS Super FREQ

OK, I see that the macro uses -- instead of - to range the control variables, so the selection does depend on the order of the variables in the data set.  Here is the log from running %vmatch(dist=tr, idca=key, a=1, b=4, lilm=12574, n=3069, firstco=&start, lastco=&end, print=n, out=result_optnet) with PROC OPTNET:

NOTE: ------------------------------------------------------------------------------------------------

NOTE: Running OPTNET version 13.1.

NOTE: ------------------------------------------------------------------------------------------------

NOTE: The number of columns in the input matrix is 12574.

NOTE: The number of rows in the input matrix is 12276.

NOTE: Data input used 1.83 (cpu: 1.82) seconds.

NOTE: ------------------------------------------------------------------------------------------------

NOTE: Processing the linear assignment problem.

NOTE: The linear assignment problem is infeasible (3436 rows are unassigned).

NOTE: The minimum cost partial linear assignment is 3682.8496594.

NOTE: Processing the linear assignment problem used 6.82 (cpu: 6.82) seconds.

NOTE: ------------------------------------------------------------------------------------------------

NOTE: The output data set contains a partial linear assignment.

NOTE: Data output used 0.67 (cpu: 0.67) seconds.

NOTE: ------------------------------------------------------------------------------------------------

NOTE: The data set WORK.__OUTT has 8840 observations and 3 variables.

NOTE: PROCEDURE OPTNET used (Total process time):

      real time           9.85 seconds

      cpu time            9.59 seconds

New result_optnet is attached.

Giamma14
Fluorite | Level 6

Thanks a lot!!!

Results are similar to proc assign but not the same, and no error is displayed so I tend to trust this more.

I've run all the analyses and final results do make sense.

sas-innovate-2026-white.png



April 27 – 30 | Gaylord Texan | Grapevine, Texas

Registration is open

Walk in ready to learn. Walk out ready to deliver. This is the data and AI conference you can't afford to miss.
Register now and lock in 2025 pricing—just $495!

Register now

Discussion stats
  • 31 replies
  • 6684 views
  • 0 likes
  • 5 in conversation