BookmarkSubscribeRSS Feed
🔒 This topic is solved and locked. Need further help from the community? Please sign in and ask a new question.
niloo
Obsidian | Level 7

Thanks PG, I tried it but I got this error:

 

74 proc glm data=a;
75 where type="cash";
ERROR: WHERE clause operator requires compatible variables.
76 class ConsiStr year Industry;
77 model Acar1 = year / noint;
78 run;

WARNING: RUN statement ignored due to previous errors. Submit QUIT; to terminate the procedure.
79 QUIT;

NOTE: The SAS System stopped processing this step because of errors.
NOTE: PROCEDURE GLM used (Total process time):
real time 0.02 seconds
cpu time 0.00 seconds

 

Shall I run the PROC GLMMOD before my PROC GLM statements?

PGStats
Opal | Level 21

The message "WHERE clause operator requires compatible variables" means that type must be numeric and "cash" is only the formatted representation of its value.  You must either replace "cash" with a number or change the where condition to 

 

 

where put(type, yourTypeFormat.) = "cash";
PG
niloo
Obsidian | Level 7

Sorry I made a mistake. In my data base "type" is numeric: 1for horizental deals, 2 for vertical and 3 for conglomerate.(so there is no horizental, vertical, conglomerate under type variable only 1 and 2 and3. "ConsiStr" is a character variable: Cash, stock, hybrid, unknown.

I changed the statements to:

proc glm data=a;
where type="3";
class ConsiStr year Industry;
model Acar1 = year / noint;
run;
QUIT;
proc glm data=a;
where put (ConsiStr,$char6.)="cash";
class ConsiStr type year Industry;
model Acar1 = ConsiStr / noint;
run;
QUIT;

and the error is still: 

46 proc glm data=a;
147 where type="3";
ERROR: WHERE clause operator requires compatible variables.
148 class ConsiStr year Industry;
149 model Acar1 = year / noint;
150 run;

WARNING: RUN statement ignored due to previous errors. Submit QUIT; to terminate the procedure.
151 QUIT;

NOTE: The SAS System stopped processing this step because of errors.
NOTE: PROCEDURE GLM used (Total process time):
real time 0.00 seconds
cpu time 0.01 seconds

 

152 proc glm data=a;
153 where put (ConsiStr,$char6.)="cash";
154 class ConsiStr type year Industry;
155 model Acar1 = ConsiStr / noint;
156 run;

NOTE: No observations were selected from data set WORK.A.
NOTE: PROCEDURE GLM used (Total process time):
real time 0.00 seconds
cpu time 0.01 seconds


157 QUIT;

 thanks,

Niloo

 

 

PGStats
Opal | Level 21

So, I guess the condition should be

 

where ConsiStr = "cash";

/* or */

where ConsiStr = "Cash";

/* or, to play safe */

where UPCASE(ConsiStr) = "CASH";

PG
niloo
Obsidian | Level 7

Thank you soooooo much PG it worked. i used the third one.

However the type variable still gives me errors:

proc glm data=a;
where UPCASE(type)="3";
class type ConsiStr year Industry;
model Acar1 = year / noint;
run;
QUIT;

error:

182 proc glm data=a;
183 where UPCASE(type)="3";
ERROR: Function UPCASE requires a character expression as argument 1.
184 class type ConsiStr year Industry;
185 model Acar1 = year / noint;
186 run;

WARNING: RUN statement ignored due to previous errors. Submit QUIT; to terminate the procedure.
187 QUIT;

NOTE: The SAS System stopped processing this step because of errors.
NOTE: PROCEDURE GLM used (Total process time):
real time 0.00 seconds
cpu time 0.00 seconds

 

 

PGStats
Opal | Level 21

type is numeric, so you need

 

where type = 3;
PG
niloo
Obsidian | Level 7

Thak you very much. It works perfectly now.

niloo
Obsidian | Level 7

Hi again,

 

I used the following statements to first define dummy variables and then run a "proc reg" :

libname ev 'C:\Regression';
run;

***Majority All data set- Regression for Acquirors, CAR (-1, +1), announcment date ********/;
data final2;
set ev.final2(keep= tdscd ADSCD Aname Tname AnDate Wdate Acar1 Acar5 Tcar1 Tcar5 TobinQ ADebtratio DEBTRT HOSTATASS AMVal4wp TMVal4wp
EqValAn EnValAn ConsiStr TNation type AEQW);
proc sort;
by adscd andate;
run;
data a;
set ev.final2;

if amval4wp ne 0 and amval4wp ne . then
ratio=tmval4wp/amval4wp;

lnTEq=log(EqValAn);
lnTEn=log(EnValAn);
lnTMV=log(TMVal4wp);
lnAMV=log(amval4wp);
lnSIZE=log(HOSTATASS);
year = year(Andate);
Industry= AMaCode;
run;


proc glmmod data=a outdesign=b outparm=parm;
class ConsiStr type Industry year;
model Acar1 = ratio lnTEn lnSIZE TobinQ ADebtratio DEBTRT ConsiStr type year Industry AEQW / noint;
run;
proc print data=parm; run;


/* If you want, rename the variables created by GLMMOD */
data c;
set b;
rename col1=ratio col2=lnTEn col3=lnSIZE col4=TobinQ col5=ADebtratio col6=DEBTRT col7=Cash col8=HYBRID col9=OTHER col10=SHARES
col11=UNKNOWN col12=Horizental col13=Vertical col14=Conglomerate col15=zero col16=one col17=two col18=three col19=four col20=five
col21=six col22=seven col23=eight col24=nine col25=ten col26=eleven col27=twelve col28=thirteen col29=fourteen col30=CPS col31=ENERGY
col32=FINANCE col33=HEALTH col34=HT col35=IND col36=MATERLS col37=REALEST col38=RETAIL col39=STAPLES col40=TELECOM col41=AEQW;
run;


proc reg data=c;
model Acar1 = ratio lnTEn lnSIZE TobinQ ADebtratio DEBTRT Cash HYBRID OTHER SHARES UNKNOWN Horizental Vertical Conglomerate zero one
two three four five six seven eight nine ten eleven twelve thirteen fourteen CPS ENERGY FINANCE HEALTH HT IND MATERLS REALEST RETAIL
STAPLES TELECOM AEQW;
run;

But I get the following notes in my results viewer :

Note: Model is not full rank. Least-squares solutions for the parameters are not unique. Some statistics will be misleading. A reported DF of 0 or B means that the estimate is biased.

 

Note: The following parameters have been set to 0, since the variables are a linear combination of other variables as shown.
 
UNKNOWN = Intercept - Cash - HYBRID - OTHER - SHARES
Conglomerate = Intercept - Horizental - Vertical
fourteen = Intercept - zero - one - two - three - four - five - six - seven - eight - nine - ten - eleven - twelve - thirteen
TELECOM = Intercept - CPS - ENERGY - FINANCE - HEALTH - HT - IND - MATERLS - REALEST - RETAIL - STAPLES

 


Parameter Estimates
Variable Label DF Parameter
Estimate
Standard
Error
t Value Pr > |t|
Intercept Intercept B 0.04524 0.10627 0.43 0.6721
ratio ratio 1 0.08509 0.03495 2.44 0.0184
lnTEn lnTEn 1 -0.00575 0.00582 -0.99 0.3281
lnSIZE lnSIZE 1 -0.00398 0.00624 -0.64 0.5269
TobinQ TobinQ 1 0.00001882 0.00003795 0.50 0.6220
ADebtratio ADebtratio 1 2.35285 3.60842 0.65 0.5172
DEBTRT DEBTRT 1 -0.02118 0.02589 -0.82 0.4170
Cash ConsiStr CASHO B 0.00063236 0.03488 0.02 0.9856
HYBRID ConsiStr HYBRID B 0.02644 0.04301 0.61 0.5414
OTHER ConsiStr OTHER B 0.03852 0.05761 0.67 0.5067
SHARES ConsiStr SHARES B 0.02220 0.03162 0.70 0.4857
UNKNOWN ConsiStr UNKNOWN 0 0 . . .
Horizental Type 1 B -0.00760 0.01355 -0.56 0.5775
Vertical Type 2 B 0.01477 0.01575 0.94 0.3527
Conglomerate Type 3 0 0 . . .
zero year 2000 B 0.04037 0.03713 1.09 0.2819
one year 2001 B 0.09816 0.03612 2.72 0.0089
two year 2002 B 0.08024 0.03817 2.10 0.0404
three year 2003 B 0.01385 0.03398 0.41 0.6853
four year 2004 B 0.04770 0.03453 1.38 0.1731
five year 2005 B 0.02025 0.03139 0.65 0.5217
six year 2006 B 0.02535 0.02826 0.90 0.3738
seven year 2007 B 0.00789 0.03068 0.26 0.7980
eight year 2008 B 0.08945 0.03590 2.49 0.0159
nine year 2009 B 0.04158 0.03096 1.34 0.1852
ten year 2010 B -0.00238 0.04236 -0.06 0.9553
eleven year 2011 B 0.04103 0.03513 1.17 0.2482
twelve year 2012 B 0.05978 0.03336 1.79 0.0789
thirteen year 2013 B 0.04555 0.04313 1.06 0.2958
fourteen year 2014 0 0 . . .
CPS Industry CPS B 0.00974 0.05062 0.19 0.8481
ENERGY Industry ENERGY B 0.07491 0.06755 1.11 0.2725
FINANCE Industry FINANCE B 0.03148 0.05087 0.62 0.5388
HEALTH Industry HEALTH B -0.01152 0.05331 -0.22 0.8298
HT Industry HT B 0.02942 0.05232 0.56 0.5763
IND Industry IND B 0.00880 0.05026 0.18 0.8616
MATERLS Industry MATERLS B 0.03385 0.05001 0.68 0.5015
REALEST Industry REALEST B 0.01833 0.05719 0.32 0.7499
RETAIL Industry RETAIL B 0.02712 0.05067 0.54 0.5947
STAPLES Industry STAPLES B 0.05081 0.05409 0.94 0.3519
TELECOM Industry TELECOM 0 0 . . .
AEQW AEQW 1 0.00003368 0.00018967 0.18 0.8598

 Is this an example of exact multicolinearity? Could you please let me know how I can create dummy variables and then run a proc reg on all variables?It seems that all my results are biased.

 

Thank you,

Niloo

 

PGStats
Opal | Level 21

Assuming you have a good reason to use proc reg instead of proc glm...

From the list of colinear variable equations, you can see that removing the intercept term will prevent all four cases of colinearity. Try adding option /noint to your proc reg model statement.

PG
niloo
Obsidian | Level 7

Hi PG,

I have used proc glm on the same set of data successfully but my professor insists that I also run a proc reg.

I changed my statements to:

proc reg data=c;
model Acar1 = ratio lnTEn lnSIZE TobinQ ADebtratio DEBTRT Cash HYBRID OTHER SHARES UNKNOWN Horizontal Vertical Conglomerate zero one
two three four five six seven eight nine ten eleven twelve thirteen fourteen CPS ENERGY FINANCE HEALTH HT IND MATERLS REALEST RETAIL
STAPLES TELECOM AEQW/noint;
run;

But I still get the notes:

Note: Model is not full rank. Least-squares solutions for the parameters are not unique. Some statistics will be misleading. A reported DF of 0 or B means that the estimate is biased. 
Note: The following parameters have been set to 0, since the variables are a linear combination of other variables as shown.
Conglomerate = Cash + HYBRID + OTHER + SHARES + UNKNOWN - Horizontal - Vertical
fourteen = Cash + HYBRID + OTHER + SHARES + UNKNOWN - zero - one - two - three - four - five - six - seven - eight - nine - ten - eleven - twelve - thirteen
TELECOM = Cash + HYBRID + OTHER + SHARES + UNKNOWN - CPS - ENERGY - FINANCE - HEALTH - HT - IND - MATERLS - REALEST - RETAIL - STAPLES


Parameter Estimates
Variable Label DF Parameter
Estimate
Standard
Error
t Value Pr > |t|
ratio ratio 1 0.08509 0.03495 2.44 0.0184
lnTEn lnTEn 1 -0.00575 0.00582 -0.99 0.3281
lnSIZE lnSIZE 1 -0.00398 0.00624 -0.64 0.5269
TobinQ TobinQ 1 0.00001882 0.00003795 0.50 0.6220
ADebtratio ADebtratio 1 2.35285 3.60842 0.65 0.5172
DEBTRT DEBTRT 1 -0.02118 0.02589 -0.82 0.4170
Cash ConsiStr CASHO B 0.04587 0.09930 0.46 0.6461
HYBRID ConsiStr HYBRID B 0.07168 0.10062 0.71 0.4794
OTHER ConsiStr OTHER B 0.08375 0.10428 0.80 0.4256
SHARES ConsiStr SHARES B 0.06744 0.09908 0.68 0.4991
UNKNOWN ConsiStr UNKNOWN B 0.04524 0.10627 0.43 0.6721
Horizontal Type 1 B -0.00760 0.01355 -0.56 0.5775
Vertical Type 2 B 0.01477 0.01575 0.94 0.3527
Conglomerate Type 3 0 0 . . .
zero year 2000 B 0.04037 0.03713 1.09 0.2819
one year 2001 B 0.09816 0.03612 2.72 0.0089
two year 2002 B 0.08024 0.03817 2.10 0.0404
three year 2003 B 0.01385 0.03398 0.41 0.6853
four year 2004 B 0.04770 0.03453 1.38 0.1731
five year 2005 B 0.02025 0.03139 0.65 0.5217
six year 2006 B 0.02535 0.02826 0.90 0.3738
seven year 2007 B 0.00789 0.03068 0.26 0.7980
eight year 2008 B 0.08945 0.03590 2.49 0.0159
nine year 2009 B 0.04158 0.03096 1.34 0.1852
ten year 2010 B -0.00238 0.04236 -0.06 0.9553
eleven year 2011 B 0.04103 0.03513 1.17 0.2482
twelve year 2012 B 0.05978 0.03336 1.79 0.0789
thirteen year 2013 B 0.04555 0.04313 1.06 0.2958
fourteen year 2014 0 0 . . .
CPS Industry CPS B 0.00974 0.05062 0.19 0.8481
ENERGY Industry ENERGY B 0.07491 0.06755 1.11 0.2725
FINANCE Industry FINANCE B 0.03148 0.05087 0.62 0.5388
HEALTH Industry HEALTH B -0.01152 0.05331 -0.22 0.8298
HT Industry HT B 0.02942 0.05232 0.56 0.5763
IND Industry IND B 0.00880 0.05026 0.18 0.8616
MATERLS Industry MATERLS B 0.03385 0.05001 0.68 0.5015
REALEST Industry REALEST B 0.01833 0.05719 0.32 0.7499
RETAIL Industry RETAIL B 0.02712 0.05067 0.54 0.5947
STAPLES Industry STAPLES B 0.05081 0.05409 0.94 0.3519
TELECOM Industry TELECOM 0 0 . . .
AEQW AEQW 1 0.00003368 0.00018967 0.18 0.8598

 

Thanks,

Niloo

 

 

SAS Innovate 2025: Save the Date

 SAS Innovate 2025 is scheduled for May 6-9 in Orlando, FL. Sign up to be first to learn about the agenda and registration!

Save the date!

How to Concatenate Values

Learn how use the CAT functions in SAS to join values from multiple variables into a single value.

Find more tutorials on the SAS Users YouTube channel.

SAS Training: Just a Click Away

 Ready to level-up your skills? Choose your own adventure.

Browse our catalog!

Discussion stats
  • 24 replies
  • 4483 views
  • 7 likes
  • 4 in conversation