Thank you for your response. Any idea of what I can do from the begining to arrive at B? This is my code below and how I arrived at table A; data dmed; set dmx1_dmy1; keep gender active; run; proc freq data=dmed; table gender active/ nopercent out=dm_freq; run; data cat_freq1; set dm_freq; length count 7 percent 6; male= catx("(", put(count, 2.), put(percent, 3.), "%)"); female = catx("(",put(count, 2.), put(percent, 3.), "%)"); where active ne .; drop count percent; run; data dfrem; set dmx1_dmy1; keep gender placebo; run; proc freq data=dfrem; table gender placebo/ nopercent out=dm_freq2; run; data cat_freq2; set dm_freq2; length count 7 percent 6; male= catx("(", put(count, 2.), put(percent, 3.), "%)"); female = catx("(",put(count, 2.), put(percent, 3.), "%)"); where placebo ne .; drop count percent; run; data cat_freq1_freq2; set cat_freq1 cat_freq2; run; proc sort data= cat_freq1_freq2 out=sorted_cat_freq; by active; run; proc transpose data= sorted_cat_freq out=transpose_freq; *by active; var male female; run; data my_freq(rename=(_name_=Gender COL1=placebo col2=active)); set transpose_freq; *drop active; run; proc sql; create table my_freq_rear as select gender, active, placebo from my_freq; quit; data Ade_lib.demog; set my_freq_rear mymeans; run;
... View more