Hello Everyone, Following on the post by zzecon (https://communities.sas.com/t5/SAS-Procedures/Making-a-publication-quality-table-from-regression-results-using/td-p/396779) I would also like to produce regression output like this one: Using the following code, I get a slightly diffferent output. /*write a dataset with standard error on the same column of coefficient*/ data parmest_; set work.parmest; if not missing(stderr) and variable not in ('R-Square','Root MSE','N. Obs.') then do; value=estimate; type='coefficient'; output; end; if not missing(stderr) then do; value=stderr; type='stderr' ;output; end; if variable in ('R-Square','Root MSE','N. Obs.') then do; value=estimate; type=variable ;output; end; run; proc format; picture stderrf (round) low-high=' 9.9999)' (prefix='(') .=' '; run; proc report data=parmest_ nowd out=table; column numord variable type dependent, (probt value); define numord /group order=data noprint; define variable / group order=data ' '; define type / group order=data noprint; define dependent / across ' '; define value /analysis sum; define probt /analysis sum; compute value; array cc _c8_ _c6_ _c4_ ; if type='stderr' then do; call define(_col_,'format','stderrf.'); end; else do; call define(_col_,'format','8.4'); do i= 1 to 3; if ~missing(cc(i)) then do; if 0.05<cc(i) <= 0.1 then call define(_col_, "style", "style=[ posttext='*']" ); else if 0.01 <cc(i) <=0.05 then call define(_col_, "style", "style=[ posttext='**']" ); else if cc(i) <= 0.01 then call define(_col_, "style", "style=[ posttext='***']" ); leave; end; end; end; endcomp; run; This is what my output table looks like: I see two problems: 1. I have two regressions. I would like to see the output side-by-side (as above) I only see one here. 2. the coefficients and standard error values are actually different than in my table (attached), as if I would changing it unintentionally. Thanks for your help. indavgcostPr > |t| value Intercept <.0001 8453.102*** <.0001 (1.3810) tag13 0.7400 -127.069 0.7400 (9.6254) avgcontract <.0001 -1224.34*** <.0001 (8.2317) tag13*avgcontract 1.5562 46.4737 1.5562 (2.5511) ses 0.0530 -42.3237* 0.0530 (1.8749) female 0.0064 -780.368*** 0.0064 (6.3947) age_gr <.0001 -2138.21*** <.0001 (4.8519) age_gr <.0001 -1909.67*** <.0001 (4.0391) age_gr <.0001 -1802.40*** <.0001 (2.4117) age_gr <.0001 -1830.20*** <.0001 (0.5354) age_gr <.0001 -1448.62*** <.0001 (3.2364) age_gr <.0001 -1609.45*** <.0001 (1.8672) age_gr <.0001 -1557.71*** <.0001 (4.7518) age_gr <.0001 -1618.78*** <.0001 (1.6792) age_gr <.0001 -1112.25*** <.0001 (4.4247) age_gr <.0001 -1069.81*** <.0001 (3.9204) age_gr <.0001 -1245.90*** <.0001 (0.5962) age_gr <.0001 -1336.19*** <.0001 (7.3560) age_gr <.0001 -1608.00*** <.0001 (6.7212) age_gr <.0001 -1644.24*** <.0001 (7.9121) age_gr <.0001 -993.303*** <.0001 (8.1234) age_gr <.0001 -1310.02*** <.0001 (2.4610) age_gr <.0001 -1282.29*** <.0001 (9.3784) age_gr 0.5106 210.1890 0.5106 (9.4449) age_gr 0.0015 -1615.85*** 0.0015 (0.1211) female*age_gr 0.0013 1127.503*** 0.0013 (0.1875) female*age_gr 0.0033 992.5148*** 0.0033 (7.4810) female*age_gr 0.0353 694.6752** 0.0353 (9.9497) female*age_gr 0.0659 623.0732* 0.0659 (8.8363) female*age_gr 0.1377 504.2382 0.1377 (9.6422) female*age_gr <.0001 1491.246*** <.0001 (3.3474) female*age_gr <.0001 1339.971*** <.0001 (8.7947) female*age_gr 0.0010 1102.112*** 0.0010 (4.9940) female*age_gr 0.0991 536.0772* 0.0991 (5.0355) female*age_gr 0.9996 -0.1699 0.9996 (4.0705) female*age_gr 0.0296 700.1651** 0.0296 (1.9080) female*age_gr 0.0951 534.5546* 0.0951 (0.2453) female*age_gr 0.0134 788.9965** 0.0134 (9.1323) female*age_gr 0.1294 491.9362 0.1294 (4.3554) female*age_gr 0.0600 624.4005* 0.0600 (1.9166) female*age_gr 0.0006 1197.305*** 0.0006 (8.4239) female*age_gr 0.0184 860.5910** 0.0184 (5.0921) female*age_gr 0.0267 -959.616** 0.0267 (2.9871) female*age_gr 0.1352 921.4893 0.1352 (6.853)
... View more