data TMT;
input trat rep c1 c2 c3 c4 c5 c6 c7 c8 c9 c10 c11;
y=c1; conteo=1; output;
y=c2; conteo=2; output;
y=c3; conteo=3; output;
y=c4; conteo=4; output;
y=c5; conteo=5; output;
y=c6; conteo=6; output;
y=c7; conteo=7; output;
y=c8; conteo=8; output;
y=c9; conteo=9; output;
y=c10; conteo=10; output;
y=c11; conteo=11; output;
drop c1-c11;
datalines;
1 1 57.9 71.4 87.5 74.3 95.6 92.0 94.1 85.7 94.5
1 2 42.9 69.2 90.5 80.0 98.0 96.7 95.9 94.9 93.6
1 3 37.5 71.4 88.9 54.5 100.0 93.8 88.9 100.0 87.5
1 4 30.8 92.3 85.2 82.8 92.5 94.9 88.4 95.5 92.7
2 1 76.0 47.1 80.6 64.7 97.4 85.4 89.5 86.8 91.4
2 2 55.6 31.6 82.4 78.9 96.4 96.8 76.5 90.0 85.7
2 3 33.3 100.0 100.0 80.0 100.0 100.0 94.4 90.5 88.1
2 4 100.0 100.0 100.0 100.0 94.4 100.0 100.0 100.0 75.0
3 1 66.7 3.3 66.7 100.0 94.4 95.2 83.3 94.1 80.6
3 2 75.0 18.2 100.0 93.5 83.0 94.6 82.8 91.2 88.5
3 3 66.7 54.5 84.6 94.4 73.9 95.0 90.5 90.9 95.2
3 4 44.4 25.0 50.0 100.0 100.0 100.0 90.0 100.0 71.4
4 1 57.9 65.0 73.9 52.4 87.0 100.0 74.2 91.7 81.0
4 2 42.9 50.0 50.0 83.3 100.0 100.0 87.5 100.0 100.0
4 3 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0
4 4 50.0 70.4 94.1 56.4 100.0 95.1 84.4 79.1 92.5
;
proc mixed data=TMT method= reml;
class trat conteo rep;
model y = trat conteo trat*conteo;
repeated / sub=rep type=CSH;
random rep;
LSMEANS trat conteo trat*conteo/ pdiff adjust=tukey;
run;
Hi!
I need the program to check the assumptions of this model
Your data to read only goes to C9 unless something didn't get pasted.
Which assumptions do you want to check??
And just to make the data step code a little more compact and easier to modify if the additional columns get added to the data:
data TMT; input trat rep c1 c2 c3 c4 c5 c6 c7 c8 c9 ; array c c1-c9; do conteo = 1 to 9; y= c[conteo]; output; end; drop c1-c9; datalines; 1 1 57.9 71.4 87.5 74.3 95.6 92.0 94.1 85.7 94.5 1 2 42.9 69.2 90.5 80.0 98.0 96.7 95.9 94.9 93.6 1 3 37.5 71.4 88.9 54.5 100.0 93.8 88.9 100.0 87.5 1 4 30.8 92.3 85.2 82.8 92.5 94.9 88.4 95.5 92.7 2 1 76.0 47.1 80.6 64.7 97.4 85.4 89.5 86.8 91.4 2 2 55.6 31.6 82.4 78.9 96.4 96.8 76.5 90.0 85.7 2 3 33.3 100.0 100.0 80.0 100.0 100.0 94.4 90.5 88.1 2 4 100.0 100.0 100.0 100.0 94.4 100.0 100.0 100.0 75.0 3 1 66.7 3.3 66.7 100.0 94.4 95.2 83.3 94.1 80.6 3 2 75.0 18.2 100.0 93.5 83.0 94.6 82.8 91.2 88.5 3 3 66.7 54.5 84.6 94.4 73.9 95.0 90.5 90.9 95.2 3 4 44.4 25.0 50.0 100.0 100.0 100.0 90.0 100.0 71.4 4 1 57.9 65.0 73.9 52.4 87.0 100.0 74.2 91.7 81.0 4 2 42.9 50.0 50.0 83.3 100.0 100.0 87.5 100.0 100.0 4 3 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 4 4 50.0 70.4 94.1 56.4 100.0 95.1 84.4 79.1 92.5 ; run;
Good news: We've extended SAS Hackathon registration until Sept. 12, so you still have time to be part of our biggest event yet – our five-year anniversary!
ANOVA, or Analysis Of Variance, is used to compare the averages or means of two or more populations to better understand how they differ. Watch this tutorial for more.
Find more tutorials on the SAS Users YouTube channel.