Turn on suggestions

Auto-suggest helps you quickly narrow down your search results by suggesting possible matches as you type.

Showing results for

- Home
- /
- Analytics
- /
- Stat Procs
- /
- Re: Proc REG. How do I transform ln confidence limits back to origin...

Options

- RSS Feed
- Mark Topic as New
- Mark Topic as Read
- Float this Topic for Current User
- Bookmark
- Subscribe
- Mute
- Printer Friendly Page

☑ This topic is **solved**.
Need further help from the community? Please
sign in and ask a **new** question.

- Mark as New
- Bookmark
- Subscribe
- Mute
- RSS Feed
- Permalink
- Report Inappropriate Content

Posted 07-24-2023 01:44 PM
(1718 views)

I have performed OLS regression on ln transformed x and y variables, and re-transformed the results (ln_pred) to the original units using Duan's Smearing Estimate (my own code). The latter is done to minimize re-transformation bias. I am not sure how to re-transform the ln confidence limits (Ln_Upper and Ln_Lower 95%) back to the original units--do I apply the smearing estimate or simply exponentiate the ln confidence limit values ?

1 ACCEPTED SOLUTION

Accepted Solutions

- Mark as New
- Bookmark
- Subscribe
- Mute
- RSS Feed
- Permalink
- Report Inappropriate Content

I haven't done this, but if I had, I probably would have used PROC NLIN, NLMIXED, GENMOD or GLIMMIX. For manually transformed values in PROC REG or GLM, it is nice to know that there is a relatively simple unbiased back-transformation that doesn't appear to be as volatile as the expected value estimator for a log-normal distribution.

See this site: https://stat.ethz.ch/education/semesters/as2015/asr/Script_v151119.pdf The authors argue that since the confidence bounds are estimated percentiles of the distribution, the naive back-transformation (simple exponentiation) is certainly adequate and appropriate.

At least until the smeared estimate is outside of the confidence interval...

SteveDenham

7 REPLIES 7

- Mark as New
- Bookmark
- Subscribe
- Mute
- RSS Feed
- Permalink
- Report Inappropriate Content

I haven't done this, but if I had, I probably would have used PROC NLIN, NLMIXED, GENMOD or GLIMMIX. For manually transformed values in PROC REG or GLM, it is nice to know that there is a relatively simple unbiased back-transformation that doesn't appear to be as volatile as the expected value estimator for a log-normal distribution.

See this site: https://stat.ethz.ch/education/semesters/as2015/asr/Script_v151119.pdf The authors argue that since the confidence bounds are estimated percentiles of the distribution, the naive back-transformation (simple exponentiation) is certainly adequate and appropriate.

At least until the smeared estimate is outside of the confidence interval...

SteveDenham

- Mark as New
- Bookmark
- Subscribe
- Mute
- RSS Feed
- Permalink
- Report Inappropriate Content

Thank you Steve. However it does look like some of the Duan's smeared estimates are outside the confidence limits. If I compute the quantiles for the exponentiated confidence limits, they are highly skewed:

Not sure how to handle this ?

- Mark as New
- Bookmark
- Subscribe
- Mute
- RSS Feed
- Permalink
- Report Inappropriate Content

If (L, U) is a (1-alpha) CI for a parameter, p, then (eta(L), eta(U)) is a (1-alpha) CI for the parameter, eta(p), for any strictly monotone increasing continuous transformation, eta. That's because

P(L <= X <= U) = P(eta(L) <= eta(X) <= eta(U))

for a continuous r.v X. So, yes, you can apply the inverse transformation to back-transform the estimates, including CIs.

- Mark as New
- Bookmark
- Subscribe
- Mute
- RSS Feed
- Permalink
- Report Inappropriate Content

Thanks, @Rick_SAS . That property was what I was thinking about when I said that if a smeared estimate is used for the expected value (= eta in your post), then it should also be applied to the confidence bounds. The Swiss Tech paper implies that a direct exponentiation should be adequate. Thoughts?

SteveDenham

- Mark as New
- Bookmark
- Subscribe
- Mute
- RSS Feed
- Permalink
- Report Inappropriate Content

I had never heard of Duan's smearing estimator until this post, and I have no experience with it. I quickly glanced at the paper you cited. It looks to me like they transformed X and Y variables by using LOG and then backtransformed the estimates by using inverse-LOG = EXP. Yes, that is valid and standard.

Maybe I am wrong, but even though the paper mentions Duan's work, I don't think they actually use it. Those paragraphs seem to be inserted (maybe at the suggestion of a referee) to let the reader know that there is an alternative, which they authors do not use.

I think it is important to point out that there is a difference between a generalized linear model with a log-link and a linear model on the log-transformed data. See Error distributions and exponential regression models - The DO Loop (sas.com)

which compares

GENMOD

model y = x / dist=normal link=log;

to GLM

`model logY = x;`

The OP seems to be using the latter. Which model is correct depends on the error distribution, which is perhaps why the OP mentions the smearing estimate. I do not know the correct model for the OP's data. Graphing the distribution of the residuals might be prudent. Domain knowledge might also help.

- Mark as New
- Bookmark
- Subscribe
- Mute
- RSS Feed
- Permalink
- Report Inappropriate Content

- Mark as New
- Bookmark
- Subscribe
- Mute
- RSS Feed
- Permalink
- Report Inappropriate Content

Thank you Rick for the insightful explanation.

Are you ready for the spotlight? We're accepting content ideas for **SAS Innovate 2025** to be held May 6-9 in Orlando, FL. The call is **open **until September 25. Read more here about **why** you should contribute and **what is in it** for you!

What is ANOVA?

ANOVA, or Analysis Of Variance, is used to compare the averages or means of two or more populations to better understand how they differ. Watch this tutorial for more.

Find more tutorials on the SAS Users YouTube channel.