BookmarkSubscribeRSS Feed

[FASTCLUS] 군집분석 결과 Scroing 적용하기

Started ‎06-14-2020 by
Modified ‎06-14-2020 by
Views 106

title 'Cluster Analysis of Fisher (1936) Iris Data';

      proc format;

         value specname

            1='Setosa    '

            2='Versicolor'

            3='Virginica ';

      run;

   

   data iris;

      input SepalLength SepalWidth PetalLength PetalWidth Species @@;

      format Species specname.;

      label SepalLength='Sepal Length in mm.'

            SepalWidth ='Sepal Width in mm.'

            PetalLength='Petal Length in mm.'

            PetalWidth ='Petal Width in mm.';

      symbol = put(species, specname10.);

      datalines;

   50 33 14 02 1 64 28 56 22 3 65 28 46 15 2 67 31 56 24 3

   63 28 51 15 3 46 34 14 03 1 69 31 51 23 3 62 22 45 15 2

   59 32 48 18 2 46 36 10 02 1 61 30 46 14 2 60 27 51 16 2

   65 30 52 20 3 56 25 39 11 2 65 30 55 18 3 58 27 51 19 3

   68 32 59 23 3 51 33 17 05 1 57 28 45 13 2 62 34 54 23 3

   77 38 67 22 3 63 33 47 16 2 67 33 57 25 3 76 30 66 21 3

   49 25 45 17 3 55 35 13 02 1 67 30 52 23 3 70 32 47 14 2

   64 32 45 15 2 61 28 40 13 2 48 31 16 02 1 59 30 51 18 3

   55 24 38 11 2 63 25 50 19 3 64 32 53 23 3 52 34 14 02 1

   49 36 14 01 1 54 30 45 15 2 79 38 64 20 3 44 32 13 02 1

   67 33 57 21 3 50 35 16 06 1 58 26 40 12 2 44 30 13 02 1

   77 28 67 20 3 63 27 49 18 3 47 32 16 02 1 55 26 44 12 2

   50 23 33 10 2 72 32 60 18 3 48 30 14 03 1 51 38 16 02 1

   61 30 49 18 3 48 34 19 02 1 50 30 16 02 1 50 32 12 02 1

   61 26 56 14 3 64 28 56 21 3 43 30 11 01 1 58 40 12 02 1

   51 38 19 04 1 67 31 44 14 2 62 28 48 18 3 49 30 14 02 1

   51 35 14 02 1 56 30 45 15 2 58 27 41 10 2 50 34 16 04 1

   46 32 14 02 1 60 29 45 15 2 57 26 35 10 2 57 44 15 04 1

   50 36 14 02 1 77 30 61 23 3 63 34 56 24 3 58 27 51 19 3

   57 29 42 13 2 72 30 58 16 3 54 34 15 04 1 52 41 15 01 1

   71 30 59 21 3 64 31 55 18 3 60 30 48 18 3 63 29 56 18 3

   49 24 33 10 2 56 27 42 13 2 57 30 42 12 2 55 42 14 02 1

   49 31 15 02 1 77 26 69 23 3 60 22 50 15 3 54 39 17 04 1

   66 29 46 13 2 52 27 39 14 2 60 34 45 16 2 50 34 15 02 1

   44 29 14 02 1 50 20 35 10 2 55 24 37 10 2 58 27 39 12 2

   47 32 13 02 1 46 31 15 02 1 69 32 57 23 3 62 29 43 13 2

   74 28 61 19 3 59 30 42 15 2 51 34 15 02 1 50 35 13 03 1

   56 28 49 20 3 60 22 40 10 2 73 29 63 18 3 67 25 58 18 3

   49 31 15 01 1 67 31 47 15 2 63 23 44 13 2 54 37 15 02 1

   56 30 41 13 2 63 25 49 15 2 61 28 47 12 2 64 29 43 13 2

   51 25 30 11 2 57 28 41 13 2 65 30 58 22 3 69 31 54 21 3

   54 39 13 04 1 51 35 14 03 1 72 36 61 25 3 65 32 51 20 3

   61 29 47 14 2 56 29 36 13 2 69 31 49 15 2 64 27 53 19 3

   68 30 55 21 3 55 25 40 13 2 48 34 16 02 1 48 30 14 01 1

   45 23 13 03 1 57 25 50 20 3 57 38 17 03 1 51 38 15 03 1

   55 23 40 13 2 66 30 44 14 2 68 28 48 14 2 54 34 17 02 1

   51 37 15 04 1 52 35 15 02 1 58 28 51 24 3 67 30 50 17 2

   63 33 60 25 3 53 37 15 02 1

   ;

 

 

data test;

 set iris(obs=10);

run;

 

 

 

     title2 'Preliminary Analysis by FASTCLUS';

proc fastclus data=iris summary maxc=10 maxiter=99 converge=0

              mean=mean out=prelim cluster=preclus outstat=test;

     var petal: sepal:;

run;

 

 

 

%let indsn = iris;  *your input dataset;

%let nclus = 3; *number of clusters to request;

%let indvars = petal: sepal:; *independent variables to run proc fastclus on;

%let valid = test; *validation dataset to score;

 

proc fastclus data=&indsn maxclusters = &nclus outseed= clusterSeeds;

var &indvars;

run;

 

/*scoring new observations using the seed dataset */

proc fastclus data=&valid  out=&valid._scored seed = clusterSeeds maxclusters = &nclus maxiter = 0;

var &indvars;

run;

 

* 참고 : https://phillippeng.wordpress.com/2008/10/06/scoring-observations-using-proc-fastclus/

Version history
Last update:
‎06-14-2020 10:29 PM
Updated by:
Contributors

sas-innovate-white.png

🚨 Early Bird Rate Extended!

Join us for SAS Innovate 2025, our biggest and most exciting global event of the year, in Orlando, FL, from May 6-9.

 

Lock in the best rate now before the price increases on April 1.

Register now!

Article Labels
Article Tags