Programming the statistical procedures from SAS

proc calis

Reply
Occasional Contributor
Posts: 15

proc calis

Hi folks,

I have a SEM model with 7 variables and I used proc calis to test it. 

my code:

 

proc calis data=texas.offenderandfamily pshort plots=pathdiagram;
path
post_famisuppreality        post_financialstrain--->strain,
strain--->post2_famisuppreality,
strain--->post2_financialstrain,

post_famisuppreality <-> post2_famisuppreality,
post_financialstrain <-> post2_financialstrain,
post2_famisuppreality             u2gender->i3balc
;

run;

 

However, it will not give me a result and I got the warning in log

 

WARNING: The estimation problem is not identified: There are more parameters to estimate ( 18 )
than the total number of mean and covariance elements ( 15 ).

ERROR: LEVMAR Optimization cannot be completed.
NOTE: LEVMAR needs more than 50 iterations or 500 function calls.
NOTE: Due to optimization failure, statistics in the Fit Summary table might not be appropriate.
NOTE: Due to optimization failure, fit statistics in path diagrams might not be appropriate.
WARNING: Critical N is not computable for df= -3.
NOTE: Due to optimization failure, standard error estimates are not computed.
WARNING: Number of zero or negative variances encountered when computing standardized results:
1. Standardization with these values was not done.
NOTE: Because standard error estimates are not available, flagging for significant estimates is
not done in path diagrams.

 

Anyone know what is happening? I do not think I have over-specification. 

Respected Advisor
Posts: 2,985

Re: proc calis


Anyone know what is happening? I do not think I have over-specification. 


 

Why do you think this? Explain. SAS thinks you have over-specified the model.

--
Paige Miller
Occasional Contributor
Posts: 15

Re: proc calis

Posted in reply to PaigeMiller

But I have 7 variables. I calculated and I feel like I should not have a d.f. small than 0 as the SAS log showed. And I saw from text books SEM models with panel data of three waves, for example, x1, x2, x3, y1, y2, y3,  and the researchers can have paths between each x and y, and at the same time, there are paths between x1 and x2, x2 and x3, y1 and y2, y2 and y3. Even that, the model is still with d.f. bigger than 0...

Need someone to help me figure it out...Thank you!

Ask a Question
Discussion stats
  • 2 replies
  • 149 views
  • 0 likes
  • 2 in conversation