@Ksharp wrote:Do you have SAS/IML ? I would like to use IML code for this kind of question.
data have; input y $ d1-d9; datalines; 201201 0.01 0.00 0.01 0.00 0.00 0.00 0.01 0.01 0.01 201202 0.03 -0.01 0.02 0.01 0.00 0.00 0.01 0.00 0.04 201203 0.01 0.00 0.01 0.00 0.00 0.00 0.00 0.00 0.02 201204 0.02 0.01 0.00 0.01 0.02 0.00 0.00 0.00 0.01 201205 0.01 0.00 0.00 0.02 0.00 0.00 0.01 0.00 0.03 201206 0.00 0.01 0.01 0.02 0.00 0.00 0.00 0.00 0.01 201207 0.01 0.02 0.00 0.00 0.00 0.00 0.03 0.00 0.02 201208 0.01 0.00 0.00 0.01 0.01 0.00 0.02 0.02 0.00 201209 0.01 0.01 0.00 0.03 0.00 0.02 0.01 0.00 0.02 201210 0.02 0.00 0.00 0.01 0.04 0.03 0.02 0.01 0.04 201211 0.01 0.02 0.01 0.00 0.00 0.00 0.00 0.03 0.00 201212 0.02 0.00 0.01 0.00 0.01 0.06 0.00 0.02 0.03 201301 0.02 0.02 0.00 0.00 0.00 0.00 0.00 0.00 0.02 201302 0.00 0.00 0.01 0.00 0.00 0.01 0.00 0.01 0.05 201303 0.01 0.01 0.00 0.01 0.00 0.01 0.00 0.01 0.00 201304 0.00 0.04 0.01 0.01 0.01 0.03 0.02 0.04 -0.01 ; proc transpose data=have out=temp name=y prefix=_; var d1-d9; id y; run; data temp; set temp; array x{*} _:; count=0; do i=1 to 13; n=_n_+i; if n>dim(x) then leave; count+1; sum=sum(sum,x{n}); end; _avg=sum/count; drop i n count sum; run; proc transpose data=temp out=want; var _:; id y; run;
i dnt have SAS IML.. Need solution in Datastep or Macro
@Cho8 wrote:
@Ksharp wrote:Do you have SAS/IML ? I would like to use IML code for this kind of question.
data have; input y $ d1-d9; datalines; 201201 0.01 0.00 0.01 0.00 0.00 0.00 0.01 0.01 0.01 201202 0.03 -0.01 0.02 0.01 0.00 0.00 0.01 0.00 0.04 201203 0.01 0.00 0.01 0.00 0.00 0.00 0.00 0.00 0.02 201204 0.02 0.01 0.00 0.01 0.02 0.00 0.00 0.00 0.01 201205 0.01 0.00 0.00 0.02 0.00 0.00 0.01 0.00 0.03 201206 0.00 0.01 0.01 0.02 0.00 0.00 0.00 0.00 0.01 201207 0.01 0.02 0.00 0.00 0.00 0.00 0.03 0.00 0.02 201208 0.01 0.00 0.00 0.01 0.01 0.00 0.02 0.02 0.00 201209 0.01 0.01 0.00 0.03 0.00 0.02 0.01 0.00 0.02 201210 0.02 0.00 0.00 0.01 0.04 0.03 0.02 0.01 0.04 201211 0.01 0.02 0.01 0.00 0.00 0.00 0.00 0.03 0.00 201212 0.02 0.00 0.01 0.00 0.01 0.06 0.00 0.02 0.03 201301 0.02 0.02 0.00 0.00 0.00 0.00 0.00 0.00 0.02 201302 0.00 0.00 0.01 0.00 0.00 0.01 0.00 0.01 0.05 201303 0.01 0.01 0.00 0.01 0.00 0.01 0.00 0.01 0.00 201304 0.00 0.04 0.01 0.01 0.01 0.03 0.02 0.04 -0.01 ; proc transpose data=have out=temp name=y prefix=_; var d1-d9; id y; run; data temp; set temp; array x{*} _:; count=0; do i=1 to 13; n=_n_+i; if n>dim(x) then leave; count+1; sum=sum(sum,x{n}); end; _avg=sum/count; drop i n count sum; run; proc transpose data=temp out=want; var _:; id y; run;i dnt have SAS IML.. Need solution in Datastep or Macro
i didnot get the logic of array part..can you just explain it..
If missing value, i want to next value.. i.e count start from non-missing value
| X | Y0 | Y1 | Y2 | Y3 | Y4 | Y5 | Y6 | Y7 | Y8 | Y9 |
| 201201 | 1% | 0% | 1% | 0% | 0% | (0%) | . | . | . | . |
| 201202 | 3% | (1%) | 2% | 1% | 0% | 0% | 1% | . | . | . |
| 201203 | 1% | 0% | 1% | 0% | (0%) | 0% | 0% | 0% | . | . |
| 201204 | 2% | 1% | 0% | 1% | 2% | 0% | (0%) | (0%) | 1% | . |
| 201205 | 1% | 0% | 0% | 2% | (0%) | 0% | 1% | 0% | 3% | 1% |
| 201206 | 0% | 1% | 1% | 2% | 0% | (0%) | 0% | (0%) | 1% | 3% |
| 201207 | 1% | 2% | (0%) | (0%) | 0% | 0% | 3% | 0% | 2% | (0%) |
| 201208 | 1% | (0%) | 0% | 1% | 1% | 0% | 2% | 2% | (0%) | 1% |
| 201209 | 1% | 1% | (0%) | 3% | 0% | 2% | 1% | (0%) | 2% | 3% |
| 201210 | 2% | (0%) | (0%) | 1% | 4% | 3% | 2% | 1% | 4% | 4% |
| 201211 | 1% | 2% | 1% | (0%) | 0% | (0%) | 0% | 3% | 0% | 0% |
| 201212 | 2% | 0% | 1% | (0%) | 1% | 6% | 0% | 2% | 3% | (0%) |
| 201301 | 2% | 2% | 0% | (0%) | 0% | 0% | 0% | (0%) | 2% | (0%) |
| 201302 | 0% | 0% | 1% | 0% | 0% | 1% | (0%) | 1% | 5% | (1%) |
| 201303 | 1% | 1% | 0% | 1% | 0% | 1% | 0% | 1% | (0%) | 1% |
| 201304 | 0% | 4% | 1% | 1% | 1% | 3% | 2% | 4% | (1%) | 1% |
| AVG | 0.012921 | 0.004853 | 0.005452 | 0.008107 | 0.006915 | 0.009627 | 0.008207 | 0.007293 | 0.018898 | 0.011633
|
Here is IML code , if you like it.
data have; input y $ d1-d9; datalines; 201201 0.01 0.00 0.01 0.00 0.00 0.00 0.01 0.01 0.01 201202 0.03 -0.01 0.02 0.01 0.00 0.00 0.01 0.00 0.04 201203 0.01 0.00 0.01 0.00 0.00 0.00 0.00 0.00 0.02 201204 0.02 0.01 0.00 0.01 0.02 0.00 0.00 0.00 0.01 201205 0.01 0.00 0.00 0.02 0.00 0.00 0.01 0.00 0.03 201206 0.00 0.01 0.01 0.02 0.00 0.00 0.00 0.00 0.01 201207 0.01 0.02 0.00 0.00 0.00 0.00 0.03 0.00 0.02 201208 0.01 0.00 0.00 0.01 0.01 0.00 0.02 0.02 0.00 201209 0.01 0.01 0.00 0.03 0.00 0.02 0.01 0.00 0.02 201210 0.02 0.00 0.00 0.01 0.04 0.03 0.02 0.01 0.04 201211 0.01 0.02 0.01 0.00 0.00 0.00 0.00 0.03 0.00 201212 0.02 0.00 0.01 0.00 0.01 0.06 0.00 0.02 0.03 201301 0.02 0.02 0.00 0.00 0.00 0.00 0.00 0.00 0.02 201302 0.00 0.00 0.01 0.00 0.00 0.01 0.00 0.01 0.05 201303 0.01 0.01 0.00 0.01 0.00 0.01 0.00 0.01 0.00 201304 0.00 0.04 0.01 0.01 0.01 0.03 0.02 0.04 -0.01 ; proc iml; use have(keep=d:) nobs nobs; read all var _num_ into x[c=vname] ; close; avg=j(1,ncol(x),.); do i=1 to ncol(x); l=i+1; u=(i+13)><nobs; avg[i]=x[l:u,i][:]; end; create avg from avg[c=vname]; append from avg; close; quit; data want; set have avg ; run;
April 27 – 30 | Gaylord Texan | Grapevine, Texas
Walk in ready to learn. Walk out ready to deliver. This is the data and AI conference you can't afford to miss.
Register now and lock in 2025 pricing—just $495!
Learn how use the CAT functions in SAS to join values from multiple variables into a single value.
Find more tutorials on the SAS Users YouTube channel.
Ready to level-up your skills? Choose your own adventure.